Notes

Subject: Object Oriented Programming
through C++ (IT-03)

Class: Information Technology BSc. 2™
year (Semester —III)

Scanned with CamScanner

Syllabus for B. Sc. 2 yeor (Semester-iil)

Subject: information Technology
OBJECT ORIENTED PROGRAMMING THROUGH C++ (IT-03) ,'

UNIT-E: Introduction th Object Oriented Programming

Introduction: Obicct Oricivicd Programny (OOF). necd for OOF. characteristics of OOF. OCP
Comeephi-Classes, Olyecty. Abstraction, Encapsulation, Inberitnince amd polymorpiyism

Cas Basles: Overview, Prosgram, Steuctsrs. whenbifiers varsabiles comstanta s operston

fypecusting

UNIT-1: Comtred Structares and Fanctions
Centrul Structures: I, (e, vwitch-case while, do-while. for ete

C+= Functions: (rend functiona s-lne fanctions. macra vy in-line functons eefésencc
varkables and call by relerempe, Basction owrlonding and detaulr arguments

UNIT-11: Objects, Classes and Inberstance

Objects and clusses: Basics of olrjoct and ciass in Ces, Pubtlic and privale members, Scope
resobution peerator, Acooss speuallers und pecoiing ¢lass members stitlc dats and funcibon
members, Constructors amd their types, Destnacsnvs, opertor overtoudingfinary. binary), iype
comersaan. virfual clas. foend class

luberitance: Concept of inheritance types of inheritance, single. multipie. multilevel
bicrarchical. bybod protected members, overriding, virtual base class

UNET-IV: Palymorphiom, 10 and File Munagement
Polymorphive; Folrters in Cos posniers and obgects. virhual and pate victual lunctions,

abetinct class. inplemesting polymarpdism

1O st File Management: Concept of streams. cin and cout chyects, farmatted and
unformation VO, manipulstons file stream. Ces fike stream classes file management functons
Bimary and randeen (iles

Recamimendad Books:

| “Otyect Ormrting Progrsemng wih O++" E Balngurasary, TMH

4 Dbkt Onanked Pregracming in Tutho Ceo', Rober! Lefone

31 “Copwect Orames Programing with ANSI and Tuibo Cr " Asnox Keminese, Pesrson
4 “The Corgiete Refsrence C++", Herbort Schitz, TMH

Scanned with CamScanner

Unit-I

Introduction

Object oriented Programming

Object oriented Programming is defined as an approach that provides a way of modularizing
programs by creating partitioned memory area for both data and functions that can be used as
templates for creating copies of such modules on demand. Writing object-oriented programs involves
creating classes, creating objects from those classes, and creating applications, which are stand-alone
executable programs that use those objects. After being created, classes can be reused over and over
again to develop new programs. Thinking in an object-oriented manner involves envisioning program
components as objects that belong to classes and are similar to concrete objects in the real world;
then, you can manipulate the objects and have them interrelate with each other to achieve a desired
result.

Basic Concepts of Object oriented Programming

1. Class

A class 1s a user defined data type. A class is a logical abstraction. It is a template that defines the
form of an object. A class specifies both code and data. It is not until an object of that class has been
created that a physical representation of that class exists in memory. When you define a class, you
declare the data that it contains and the code that operates on that data. Data is contained in instance
variables defined by the class known as data members, and code is contained in functions known as
member functions. The code and data that constitute a class are called members of the class.

2. Object

An object 1s an identifiable entity with specific characteristics and behavior. An object is said to be an
instance of a class. Defining an object is similar to defining a variable of any data type. Space is set
aside for it in memory.

3. Encapsulation

Encapsulation is a programming mechanism that binds together code and the data it manipulates, and
that keeps both safe from outside interference and misuse. C++’s basic unit of encapsulation is the
class. Within a class, code or data or both may be private to that object or public. Private code or data
is known to and accessible by only another part of the object. That is, private code or data cannot be
accessed by a piece of the program that exists outside the object. When code or data is public, other
parts of your program can access it even though it is defined within an object. Typically, the public
parts of an object are used to provide a controlled interface to the private elements of the object. This
insulation of the data from direct access by the program is called data hiding.

4. Data abstraction

In object oriented programming, each object will have external interfaces through which it can be
made use of. There is no need to look into its inner details. The object itself may be made of many
smaller objects again with proper interfaces. The user needs to know the external interfaces only to
make use of an object. The internal details of the objects are hidden which makes them abstract. The
technique of hiding internal details in an object is called data abstraction.

Scanned with CamScanner

S. Inheritance

Inheritance is the mechanism by which one class can inherit the properties of another. It allows a
hierarchy of classes to be build, moving from the most general to the most specific. When one class is
inherited by another, the class that is inherited is called the base class. The inheriting class is called
the derived class. In general, the process of inheritance begins with the definition of a base class. The
base class defines all qualities that will be common to any derived class. . In OOPs, the concept of
inheritance provides the idea of reusability. In essence, the base class represent the most general
description of a set of traits. The derived class inherits those general traits and adds properties that are
specific to that class.

6. Polymorphism

Polymorphism (from the Greek, meaning “many forms”) is a feature that allows one interface to be
used for a general class of actions. The specific action is determined by the exact nature of the
situation. The concept of polymorphism is often expressed by the phrase “one interface, multiple
methods.” This means that it is possible to design a generic interface to a group of related activities.
This helps reduce complexity by allowing the same interface to be used to specify a general class of
action. It is the compiler’s job to select the specific action as it applies to each situation.

Polymorphism

Run time

Compile time

Polymorphism Polymorphism

Virtual
functions

Function Operator
overloading overloading

In compile time polymorphism, the compiler is able to select the appropriate function for a particular

call at compile time. In C++, it 1s possible to use one function name for many different purposes. This
type of polymorphism is called function overloading. Polymorphism can also be applied to operators.

In that case, it is called operator overloading.

In run time polymorphism, the compiler selects the appropriate function for a particular call while the
program is running. C++ supports a mechanism known as virtual functions to achieve run time
polymorphism.

Need for Object oriented Programming

Object-oriented programming scales very well, from the most trivial of problems to the most complex
tasks. It provides a form of abstraction that resonates with techniques people use to solve problems in
their everyday life.

Object-oriented programming was developed because limitations were discovered in earlier
approaches to programming. There were two related problems. First, functions have unrestricted
access to global data. Second, unrelated functions and data, the basis of the procedural paradigm,
provide a poor model of the real world.

Scanned with CamScanner

Benefits of Object oriented Programming
1. Simplicity: Software objects model real world objects, so the complexity is reduced and the
program structure is very clear.

2. Modularity: Each object forms a separate entity whose internal workings are decoupled from other
parts of the system.

3. Modifiability: It is easy to make minor changes in the data representation or the procedures in an
0O program. Changes inside a class do not affect any other part of a program, since the only public
interface that the external world has to a class is through the use of methods.

4. Extensibility: adding new features or responding to changing operating environments can be
solved by introducing a few new objects and modifying some existing ones.

5. Maintainability: objects can be maintained separately, making locating and fixing problems easier.

6. Re-usability: objects can be reused in different programs.

C++

C++ is an object oriented programming language. It was developed by Bjarne Stroustrup in 1979 at
Bell Laboratories in Murray Hill, New Jersey. He initially called the new language "C with Classes."
However, in 1983 the name was changed to C++.

C++ is a superset of C. Stroustrup built C++ on the foundation of C, including all of C’s features,
attributes, and benefits. Most of the features that Stroustrup added to C were designed to support
object-oriented programming .These features comprise of classes, inheritance, function overloading
and operator overloading. C++ has many other new features as well, including an improved approach
to input/output (I/O) and a new way to write comments.

C++ is used for developing applications such as editors, databases, personal file systems, networking
utilities, and communication programs. Because C++ shares C’s efficiency, much high-performance
systems software is constructed using C++.

A Simple C++ Program
#include<iostream.h>

#include<conio.h>

int main()

{

cout<< “Simple C++ program without using class™;
return 0;

}

Lines beginning with a hash sign (#) are directives read and interpreted by what is known as

the preprocessor. They are special lines interpreted before the compilation of the program itself
begins. In this case, the directive #include <iostream.h>, instructs the preprocessor to include a
section of standard C++ code, known as header iostream that allows to perform standard input and
output operations, such as writing the output of this program to the screen.

Scanned with CamScanner

The function named main is a special function in all C++ programs; it is the function called when the
program is run. The execution of all C++ programs begins with the main function, regardless of
where the function is actually located within the code.

The open brace ({) indicates the beginning of main's function definition, and the closing brace (})
indicates its end.

The statement :
cout<< “Simple C++ program without using class™;

causes the string in quotation marks to be displayed on the screen. The identifier cout (pronounced as
¢ out) denotes an object. It points to the standard output device namely the console monitor. The
operator << is called insertion operator. It directs the string on its right to the object on its left.

The program ends with this statement:
return 0;

This causes zero to be returned to the calling process (which is usually the operating system).
Returning zero indicates that the program terminated normally. Abnormal program termination should
be signaled by returning a nonzero value.

The general structure of C++ program with classes is shown as:
1. Documentation Section

2. Preprocessor Directives or Compiler Directives Section

(1) Link Section

(11) Definition Section

3. Global Declaration Section

4. Class declaration or definition

5. Main C++ program function called main ()

C++ keywords

When a language is defined, one has to design a set of instructions to be used for communicating with
the computer to carry out specific operations. The set of instructions which are used in programming,
are called keywords. These are also known as reserved words of the language. They have a specific
meaning for the C++ compiler and should be used for giving specific instructions to the computer.
These words cannot be used for any other purpose, such as naming a variable. C++ is a case-sensitive
language, and it requires that all keywords be in lowercase. C++ keywords are:

Scanned with CamScanner

asm auto bool break
case catch char class
const const_cast confinue default
delete do double dynamic_cast
else enum explicit export
extern false float for
friend goto if inline
int long mutable namespace
new operator privale protected
public register reinferpref_cast refurn
short signed sizeof static
stafic_cast struct swilch template
this throw true fry
typedef typeid typename union
unsigned using virtual void
volafile wechar t while

Identifiers

An identifier is a name assigned to a function, variable, or any other user-defined item. Identifiers can

be from one to several characters long.

Rules for naming identifiers:

* Variable names can start with any letter of the alphabet or an underscore. Next comes a letter,

a digit, or an underscore.

= Uppercase and lowercase are distinct.

* C++ keywords cannot be used as identifier.

Data types

Data type defines size and type of values that a variable can store along with the set of operations that
can be performed on that variable. C++ provides built-in data types that correspond to integers,
characters, floating-point values, and Boolean values. There are the seven basic data types in C++ as

shown below:

Type

Meaning

char(character)

holds 8-bit ASCII characters

wchar_t(Wide character)

holds characters that are part of large character sets

int(Integer)

represent integer numbers having no fractional part

float(floating point)

stores real numbers in the range of about 3.4x10-38to
3.4x10 38,with a precision of seven digits.

Scanned with CamScanner

double(Double floating point) Stores real numbers in the range from 1.7x10

—308 tol.7x10308 with a precision of 15 digits.

bool(Boolean)
Void Valueless

can have only two possible values: true and false.

C++ allows certain of the basic types to have modifiers preceding them. A modifier alters the
meaning of the base type so that it more precisely fits the needs of various situations. The data type
modifiers are: signed, unsigned, long and short

Type Minimal Range

char T w127

wrnigned char 010 255

ugned char " Zei1z7

int -32.767 w0 32767

ursagned nt 0 1o 65,535

signed int Same on it

short int -32.767 0 32,767

ursigred thort it 0 1o 65,535

wgned shodt int Scrme on short int

long int 2,147,483 647 o 2,147 483 647
sgediongit _ [Somacrlngid_

unsigned long int 0 1o 4,294,967 295

Flocn 1637 to 1E437, with six digits of precision
double 1E-37 1o 1E+37, with ten digit of precision
long double 16-37 1o 16437, with hen dighs of precision

This figure shows all combinations of the basic data types and modifiers along with their size and
range for a 16-bit word machine

Variable

A variable is a named area in memory used to store values during program execution. Variables are
run time entities. A variable has a symbolic name and can be given a variety of values. When a
variable is given a value, that value is actually placed in the memory space assigned to the variable.
All variables must be declared before they can be used. The general form of a declaration is:

type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of one or more
identifier names separated by commas. Here are some declarations:

intij,l;
short int si;
unsigned int ui;

double balance, profit, loss;

Scanned with CamScanner

Constants

Constants refer to fixed values that the program cannot alter. Constants can be of any of the basic data
types. The way each constant is represented depends upon its type. Constants are also called literals.
We can use keyword const prefix to declare constants with a specific type as follows:

const type variableName = value;

e.g,
const int LENGTH = 10;

Enumerated Types

An enumerated type declares an optional type name and a set of zero or more identifiers that can be
used as values of the type. Each enumerator is a constant whose type is the enumeration. Creating an
enumeration requires the use of the keyword enum. The general form of an enumeration type is:

enum enum-name { list of names } var-list;
Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called color and the variable ¢ of
type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } =c;

By default, the value of the first name is 0, the second name has the value 1 and the third has the
value 2, and so on. But you can give a name, a specific value by adding an initializer. For example, in
the following enumeration, green will have the value 5.

enum color { red, green=5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that precedes it.

Operator

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators. Generally, there are six type of operators:
Arithmetical operators, Relational operators, Logical operators, Assignment operators, Conditional
operators, Comma operator.

Arithmetical operators
Arithmetical operators +, -, *, /, and % are used to performs an arithmetic (numeric) operation.

Operator Meaning

+ Addition

- Subtraction

B Multiplication
/ Division

% Modulus

You can use the operators +, -, *, and / with both integral and floating-point data types. Modulus or
remainder % operator is used only with the integral data type.

Scanned with CamScanner

Relational operators

The relational operators are used to test the relation between two values. All relational operators are
binary operators and therefore require two operands. A relational expression returns zero when the
relation is false and a non-zero when it is true. The following table shows the relational operators.

Relational Operators Meaning

< Less than

<= Less than or equal to
—= Equal to

> Greater than

>= Greater than or equal to
1= Not equal to

Logical operators
The logical operators are used to combine one or more relational expression. The logical operators are

Operators Meaning
Il OR

&& AND

! NOT

Assignment operator
The assignment operator '=' is used for assigning a variable to a value. This operator takes the
expression on its right-hand-side and places it into the variable on its left-hand-side. For example:

m=35;
The operator takes the expression on the right, 5. and stores it in the variable on the left, m.
x=y=z=32;

This code stores the value 32 in each of the three variables X, y, and z. In addition to standard
assignment operator shown above, C++ also support compound assignment operators.

Compound Assignment Operators

Operator Example Equivalent to
+ = A+=2 A=A+2
_—— A-=2 A=A-2
% = A%=2 A=A%2
/= A/=2 A=A/2
_ A=2 A=A*2

Increment and Decrement Operators

C++ provides two special operators viz ++' and '--' for incrementing and decrementing the value of a
variable by 1. The increment/decrement operator can be used with any type of variable but it cannot
be used with any constant. Increment and decrement operators each have two forms, pre and post.

The syntax of the increment operator is:
Pre-increment: ++variable
Post-increment: variable++

The syntax of the decrement operator is:

Scanned with CamScanner

Pre-decrement: —variable
Post-decrement: variable—

In Prefix form first variable is first incremented/decremented, then evaluated
In Postfix form first variable is first evaluated, then incremented / decremented.

Conditional operator
The conditional operator 7: is called ternary operator as it requires three operands. The format of the
conditional operator is :

Conditional _ expression ? expressionl : expression2;
If the value of conditional expression is true then the expressionl is evaluated, otherwise expression2
1s evaluated.

inta=5,b=6;

big=(a>b)?a:b;
The condition evaluates to false, therefore big gets the value from b and it becomes 6.

The comma operator
The comma operator gives left to right evaluation of expressions. When the set of expressions has to
be evaluated for a value, only the rightmost expression is considered.

inta=1,b=2,¢c=3,1;// comma acts as separator, not as an operator

1=(a, b); // stores b into 1 would first assign the value of a to 1, and then assign value of b to variable 1.
So, at the end, variable 1 would contain the value 2.

The sizeof operator
The sizeof operator can be used to find how many bytes are required for an object to store in memory.
For example

sizeof (char) returns 1

sizeof (float) returns 4

Typecasting
Typecasting is the concept of converting the value of one type into another type. For example, you
might have a float that you need to use in a function that requires an integer.

Implicit conversion

Almost every compiler makes use of what is called automatic typecasting. It automatically converts
one type into another type. If the compiler converts a type it will normally give a warning. For
example this warning: conversion from “double’ to “int’, possible loss of data. The problem with this
is, that you get a warning (normally you want to compile without warnings and errors) and you are not
in control. With control we mean, you did not decide to convert to another type, the compiler did.
Also the possible loss of data could be unwanted.

Scanned with CamScanner

Explicit conversion
The C++ language have ways to give you back control. This can be done with what is called an
explicit conversion.

Four typecast operators
The C++ language has four typecast operators:
®* static_cast
* reinterpret_cast
* const_cast
= dynamic_cast
Type Conversion
The Type Conversion is that which automatically converts the one data type into another but

remember we can store a large data type into the other. For example we can't store a float
into int because a float is greater than int.

When a user can convert the one data type into then it is called as the type casting.
The type Conversion is performed by the compiler but a casting is done by the user for
example converting a float into int. When we use the Type Conversion then it is called the
promotion. In the type casting when we convert a large data type into another then it is
called as the demotion. When we use the type casting then we can loss some data.

Scanned with CamScanner

Unit -1I

Control Structures
Control structures allows to control the flow of program’s execution based on certain conditions C++
supports following basic control structures:

1) Selection Control structure
2) Loop Control structure

1) Selection Control structure:

Selection Control structures allows to control the flow of program’s execution depending upon the
state of a particular condition being true or false .C++ supports two types of selection statements :if
and switch. Condition operator (7:) can also be used as an alternative to the if statement.

A.1) If Statement:

The syntax of an if statement in C++ is:
if(condition)
{

/! statement(s) will execute if the condition is true

}

If the condition evaluates to true, then the block of code inside the if statement will be executed. If it
evaluates to false, then the first set of code after the end of the if statement (after the closing curly
brace) will be executed.

Flowchart showing working of if statement

Scanned with CamScanner

/I A Program to find whether a given number is even or odd using 1f ... else statement
#include<iostream.h>
#include<conio.h>

int main()

{ intn;

cout<<"enter number”’;
cin>>n;

if(n%2==0)
cout<<"Even number™;
else

cout<<"0Odd number™;
return 0;

}

A.2) The if...else Statement
The syntax is shown as:

if(condition) {

// statement(s) will execute if the condition is true
}

else{

// statement(s) will execute if condition is false

}

If the condition evaluates to true, then the if block of code will be executed, otherwise else block of
code will be executed.

Flowchart

W aomdition
s true

M condition
i falue

Scanned with CamScanner

A3) if..else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very useful to test

various conditions using single if...else if statement.
The Syntax is shown as:

if(condition 1){

/! Executes when the condition 1 is true

}

else if(condition 2){

/! Executes when the condition 2 is true

}

else if(condition 3){

/! Executes when the condition 3 is true

}

else {

/! executes when the none of the above condition is true.
}

A.4) Nested if Statement

It is always legal to nest if-else statements, which means you can use one if or
else if statement inside another if or else if statement(s).

The syntax for a nested if statement is as follows:

if(condition 1){

// Executes when the condition 1 is true

if(condition 2){

// Executes when the condition 2 is true

}

Scanned with CamScanner

B) Switch

C++ has a built-in multiple-branch selection statement, called switch, which successively tests the
value of an expression against a list of integer or character constants. When a match is found, the
statements associated with that constant are executed. The general form of the switch statement is:

switch (expression) {
case constant]:
statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence

break;

default
statement sequence

}

The expression must evaluate to a character or integer value. Floating-point expressions, for example,
are not allowed. The value of expression is tested, in order, against the values of the constants
specified in the case statements. When a match is found, the statement sequence associated with that
case is executed until the break statement or the end of the switch statement is reached. The default
statement is executed if no matches are found. The default is optional and, if it is not present, no

action takes place if all matches fail.

The break statement is one of C++'s jump statements. You can use it in loops as well as in the switch
statement. When break is encountered in a switch, program execution "jumps” to the line of code

following the switch statement.

Flowchart

Scanned with CamScanner

2) Loop control structures

A loop statement allows us to execute a statement or group of statements multiple times. Loops or
iterative statements tell the program to repeat a fragment of code several times or as long as a certain
condition holds. C++ provides three convenient iterative statements: while, for, and do-while.

while loop
A while loop statement repeatedly executes a target statement as long as a given condition is true. It is
an entry-controlled loop.

The syntax of a while loop in C++ is:
while(condition) {
statement(s);

}

Here, statement(s) may be a single statement or a block of statements. The condition may be any
expression, and true is any non-zero value. The loop iterates while the condition is true. After each
execution of the loop, the value of test expression is changed. When the condition becomes false,
program control passes to the line immediately following the loop.

Flowchart

while| conditiaon)

conditional code -
: .

f condition
s trus
code block I condrion
in false

-

// A program to display numbers from 1 to 100

#include<iostream.h>
#include<conio.h>
int main(){

int i=1;
while(i<=100){
cout<<i ;

i++;
}

return 0;

Scanned with CamScanner

The do-while Loop

The do-while loop differs from the while loop in that the condition is tested after the body of the loop.
This assures that the program goes through the iteration at least once. It is an exit-controlled loop.

do{
statement(s);

}while(condition);

The conditional expression appears at the end of the loop, so the statement(s) in the loop execute once
before the condition is tested. If the condition is true, the flow of control jumps back up to do, and the
statement(s) in the loop execute again. This process repeats until the given condition becomes false.

conditional code |

}while (conditian)

W candition
I rue

If condition
in Talne

// A program to display numbers from 1 to 100
#include<iostream.h>
#include<conio.h>

int main(){

int i=1;

do

{ cout<<i ;
i++;

} while(i<=100);
return 0;

}

for Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to

execute a specific number of times. The syntax of a for loop in C++ is:

for (init; condition; increment) {
statement(s);

}

Scanned with CamScanner

Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and initialize any loop
control variables. You are not required to put a statement here, as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the body
of the loop does not execute and flow of control jumps to the next statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to the increment
statement. This statement allows you to update any C++ loop control variables. This statement can be

left blank, as long as a semicolon appears after the condition.

4. The condition is now evaluated again. If it is true, the loop executes and the process repeats itself
(body of loop, then increment step, and then again condition). After the condition becomes false, the

for loop terminates.

Flow Diagram

L e e N e e AL]

CONaAmanal ©oae
]

LUt E LT

R

/! A program to display numbers from 1 to 100
#include<iostream.h>

#include<conio.h>

int main() {

nti;

for (i=1;1<=100;1++)

{

cout<<i ;

return 0;

}

Scanned with CamScanner

C++ Functions

A function groups a number of program statements into a unit and gives it a name. This unit can then
be invoked from other parts of the program. The function’s code is stored in only one place in
memory, even though the function is executed many times in the course of the program’s execution.
Functions help to reduce the program size when same set of instructions are to be executed again and
again. A general function consists of three parts, namely, function declaration (or prototype), function
definition and function call.

Function declaration — prototype:

A function has to be declared before using it, in a manner similar to variables and constants. A
function declaration tells the compiler about a function’s name, return type, and parameters and how
to call the function. The general form of a C++ function declaration is as follows:

return_type function_name(parameter list);

Function definition

The function definition is the actual body of the function. The function definition consists of two parts
namely, function header and function body.

The general form of a C++ function definition is as follows:
return_type function_name(parameter list)
{ body of the function }

Here, Return Type: A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In this
case, the return_type is the keyword void.

Function Name: This is the actual name of the function.

Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to the
parameter. This value is referred to as actual parameter or argument. The parameter list refers to the
type, order, and number of the parameters of a function. Parameters are optional; that is, a function
may contain no parameters.

Function Body: The function body contains a collection of statements that define what the function
does.

Calling a Function
To use a function, you will have to call or invoke that function. To call a function, you simply need to

pass the required parameters along with function name, and if function returns a value, then you can
store returned value.

A c++ program calculating factorial of a number using functions
#include<iostream.h>

#include<conio.h>

int factorial(int n); /ffunction declaration

int main(){

Scanned with CamScanner

int no, f;
cout<<"enter the positive number:-*;
cin>>no;
f=factorial(no); //function call
cout<<"\nThe factorial of a number"<<no<<"is"<<f,
return 0;
}
int factorial(int n) Mfunction definition
{ int i, fact=1;
for(i=1;1<=n:i++){
fact=fact*i;
}
return fact;

}

Inline Functions

An inline function is a function that is expanded inline at the point at which it is invoked, instead of
actually being called. The reason that inline functions are an important addition to C++ is that they
allow you to create very efficient code. Each time a normal function is called, a significant amount of
overhead is generated by the calling and return mechanism. Typically, arguments are pushed onto the
stack and various registers are saved when a function is called, and then restored when the function
returns. The trouble is that these instructions take time. However, when a function is expanded inline,
none of those operations occur. Although expanding function calls in line can produce faster run
times, it can also result in larger code size because of duplicated code. For this reason, it is best to
inline only very small functions. inline is actually just a request, not a command, to the compiler. The
compiler can choose to ignore it. Also, some compilers may not inline all types of functions. If a
function cannot be inlined, it will simply be called as a normal function.

A function can be defined as an inline function by prefixing the keyword inline to the function header
as given below:

inline function header {

function body

}

/! A program illustrating inline function
#include<iostream.h>
#include<conio.h>

inline int max(int x, int y){

if(x>y)

return x;

Scanned with CamScanner

else

return y;

}

int main() {

int a,b;

cout<<"’enter two numbers”;

cin>>a>>b;

cout << "The max is: " <<max(a,.b) << endl;

return 0;

}

Macros Vs inline functions

Preprocessor macros are just substitution patterns applied to your code. They can be used almost
anywhere in your code because they are replaced with their expansions before any compilation starts.

Inline functions are actual functions whose body is directly injected into their call site. They can only
be used where a function call is appropriate.

inline functions are similar to macros (because the function code is expanded at the point of the call at
compile time), inline functions are parsed by the compiler, whereas macros are expanded by the
preprocessor. As a result, there are several important differences:

* Inline functions follow all the protocols of type safety enforced on normal functions.

* Inline functions are specified using the same syntax as any other function except that they
include the inline keyword in the function declaration.

* Expressions passed as arguments to inline functions are evaluated once.
* In some cases, expressions passed as arguments to macros can be evaluated more than once.
* macros are expanded at pre-compile time, you cannot use them for debugging, but you can

use inline functions.

Reference variable

A reference variable is an alias, that is, another name for an already existing variable. Once a
reference is initialized with a variable, either the variable name or the reference name may be used to
refer to the variable. To declare a reference variable or parameter, precede the variable's name with
the & .The syntax for declaring a reference variable is:

datatype &Ref = variable name;

Example:

int main(){

int var1=10; /fdeclaring simple variable
int & var2=varl; //declaring reference variable

cout<<"\n value of var2 =" << var2,

Scanned with CamScanner

return 0;

}

var2 is a reference variable to varl.Hence, var2 is an alternate name to varl.This code prints the value

of var2 exactly as that of varl.

Call by reference

Arguments can be passed to functions in one of two ways: using call-by-value or call-by-reference.
When using call-by-value, a copy of the argument is passed to the function. Call-by-reference passes
the address of the argument to the function. By default, C++ uses call-by-value.

Provision of the reference variables in c++ permits us to pass parameter to the functions by reference.
When we pass arguments by reference, the formal arguments in the called function become aliases to
the actual arguments in the calling function. This means that when the function is working with its

own arguments, it is actually working on the original data.

Example
#include <iostream.h>

#include<conio.h>

void swap(int &x, int &y):// function declaration

int main (){

int a = 10, b=20;

cout << "Before swapping "<<end],

cout<< “value of a :" << a<<"wvalue of b :" << b << endl;
swap(a, b); //calling a function to swap the values.
cout << "After swapping <<endl;

cout<<" value of a :" << a<< “value of b :" <<b << endl;
return 0;

}

void swap(int &x, int &y) | //function definition to swap the values.

int temp;

temp = X;

Output:
Before swapping value of a:10 value of b:20

After swapping value of a:20 value of b:10

Scanned with CamScanner

Function Overloading

Function overloading is the process of using the same name for two or more functions. Each
redefinition of the function must use either different types of parameters or a different number of
parameters. It is only through these differences that the compiler knows which function to call in any
given situation. Overloaded functions can help reduce the complexity of a program by allowing
related operations to be referred to by the same name. To overload a function, simply declare and
define all required versions. The compiler will automatically select the correct version based upon the
number and/or type of the arguments used to call the function. Two functions differing only in their
return types cannot be overloaded.

Example
#include<iostream.h>
#include<conio.h>

int sum(int p.int g,int r);
double sum(int I.double m);

float sum(float p.float q)

int main(){
cout<<"sum="<< sum(11,22 33); /fcalls funcl
cout<<"sum="<< sum(10.15.5); //calls func2
cout<<"sum="<< sum(13.5,12.5); /fcalls func3
return 0;
}
int sum(int p.int q,int r){ /ffuncl
return(a+b+c);
}
double sum(int 1, double m){ //func2
return(l+m);
}
float sum(float p,float g){ /ffunc3
return(p+q);

}

Default arguments

C++ allows a function to assign a parameter a default value when no argument corresponding to that
parameter is specified in a call to that function. The default value is specified in a manner
syntactically similar to a variable initialization. All default parameters must be to the right of any
parameters that don't have defaults. We cannot provide a default value to a particular argument in the
middle of an argument list. When you create a function that has one or more default arguments, those
arguments must be specified only once: either in the function's prototype or in the function's definition
if the definition precedes the function’s first use.

Scanned with CamScanner

Default arguments are useful if you don’t want to go to the trouble of writing arguments that, for

example, almost always have the same value. They are also useful in cases where, after a program 1s
written, the programmer decides to increase the capability of a function by adding another argument.
Using default arguments means that the existing function calls can continue to use the old number of

arguments, while new function calls can use more.
Example

#include <iostream.h>

#include<conio.h>

int sum(int a, int b=20){

return(a + b);

}

int main (){

int a = 100, b=200, result;

result = sum(a, b); /there a=100 , b=200

cout << "Total value is :" << result << endl;

result = sum(a); /there a=100 , b=20(using default value)
cout << "Total value is :" << result << endl;

return 0;

}

Scanned with CamScanner

Unit-IIT

Class

A class is a user defined data type. A class is a logical abstraction. It is a template that defines the
form of an object. A class specifies both code and data. It is not until an object of that class has been
created that a physical representation of that class exists in memory. When you define a class, you
declare the data that it contains and the code that operates on that data. Data is contained in instance
variables defined by the class known as data members, and code is contained in functions known as
member functions. The code and data that constitute a class are called members of the class. The
general form of class declaration is:

class class-name {
access-specifier:
data and functions
access-specifier:
data and functions
s
access-specifier:
data and functions
} object-list;

The object-list is optional. If present, it declares objects of the class. Here, access-specifier is one of
these three C++ keywords:

public private protected

By default, functions and data declared within a class are private to that class and may be accessed
only by other members of the class. The public access_specifier allows functions or data to be
accessible to other parts of your program. The protected access_specifier is needed only when
inheritance is involved.

Example:

#include<iostream.h>

#include<conio.h>

Class myclass { /{ class declaration
// private members to myclass

int a;

public:

// public members to myclass

void set_a(intnum);

int get_a();

15

Scanned with CamScanner

Object

An object is an identifiable entity with specific characteristics and behavior. An object is said to be an
instance of a class. Defining an object is similar to defining a variable of any data type: Space is set
aside for it in memory. Defining objects in this way means creating them. This is also called
instantiating them. Once a Class has been declared, we can create objects of that Class by using the
class Name like any other built-in type variable as shown:

className objectName

Example

void main() {

myclass obl, ob2; /fthese are object of type myclass

/I ... program code

}

Accessing Class Members

The main() cannot contain statements that access class members directly. Class members can be
accessed only by an object of that class. To access class members, use the dot (.) operator. The dot
operator links the name of an object with the name of a member. The general form of the dot operator
is shown here:

object.member
Example
obl.set_a(10);

The private members of a class cannot be accessed directly using the dot operator, but through the
member functions of that class providing data hiding. A member function can call another member
function directly, without using the dot operator.

C++ program to find sum of two numbers using classes
#include<iostream.h>
#include<conio.h>
class Af

int a,b,c;

public:

void sum(){

cout<<"enter two numbers";
cin>>a>>b;

c=a+h;

cout<<"sum="<<c;

}

|5

Scanned with CamScanner

int main(){

Aug

u.sumi);

getch();

return(0):

}

Scope Resolution operator

Member functions can be defined within the class definition or separately using scope resolution
operator (::). Defining a member function within the class definition declares the function inline, even

if you do not use the inline specifier. Defining a member function using scope resolution operator uses
following declaration

return-type class-name::func-name(parameter- list) {
// body of function
}

Here the class-name is the name of the class to which the function belongs. The scope resolution
operator (::) tells the compiler that the function func-name belongs to the class class-name. That is,
the scope of the function is restricted to the class-name specified.

Class myclass {

int a;

public:

void set_a(intnum); //member function declaration

int get_a(); //member function declaration
):

//member function definition outside class using scope resolution operator
void myclass :: set_a(intnum)

{

a=num;

}

int myclass::get_a() {

return a;

}

Another use of scope resolution operator is to allow access to the global version of a variable. In many
situation, it happens that the name of global variable and the name of the local variable are same .In

Scanned with CamScanner

this while accessing the variable, the priority is given to the local variable by the compiler. If we want
to access or use the global variable, then the scope resolution operator (::) is used. The syntax for
accessing a global variable using scope resolution operator is as follows:-

:: Global-variable-name

Static Data Members
When you precede a member variable's declaration with static, you are telling the compiler that only
one copy of that variable will exist and that all objects of the class will share that variable. Unlike
regular data members, individual copies of a static member variable are not made for each object. No
matter how many objects of a class are created, only one copy of a static data member exists. Thus, all
objects of that class use that same variable. All static variables are initialized to zero before the first
object is created. When you declare a static data member within a class, you are not defining it. (That
is, you are not allocating storage for it.) Instead, you must provide a global definition for it elsewhere,
outside the class. This is done by redeclaring the static variable using the scope resolution operator to
identify the class to which it belongs. This causes storage for the variable to be allocated.

One use of a static member variable is to provide access control to some shared resource used
by all objects of a class. Another interesting use of a static member variable is to keep track of the
number of objects of a particular class type that are in existence.

Static Member Functions

Member functions may also be declared as static. They may only directly refer to other static
members of the class. Actually, static member functions have limited applications, but one good use
for them is to "preinitialize" private static data before any object is actually created. A static member
function can be called using the class name instead of its objects as follows:

class name :: function name

//Program showing working of static class members
#include <iostream.h>

#include<conio.h>

class static_type {

static int i; /fstatic data member
public:
static void init(int x) {i = x;} //static member function

void show() {cout << i;}};

int static_type :: i; // static data member definition
int main(){

static_type::init(100); /lAccessing static function

static_type x;

x.show();

return 0;

}

Scanned with CamScanner

Constructor:

A constructor is a special member function whose task is to initialize the objects of its class. It is
special because its name is same as the class name. The constructor is invoked whenever an object of
its associated class is created. It is called constructor because it construct the value data members of

the class. The constructor functions have some special characteristics.
= They should be declared in the public section.

*= They are invoked automatically when the objects are created.

= They do not have return types, not even void and therefore, they cannot return values.

* They cannot be inherited, though a derived class can call the base class constructor.

Example:
#include< iostream.h>

#include<conio.h>

class myclass { // class declaration
int a;

public:

myclass(); //default constructor

void show();

b

myclass :: myclass() {
cout <<"In constructor\n";
a=10;

}

myclass :: show() {
cout<< a;

}

int main() {

int ob; // automatic call to constructor
ob.show();

return(;

}

In this simple example the constructor is called when the object is created, and the constructor

initializes the private variable a to10.

Scanned with CamScanner

Default constructor

The default constructor for any class is the constructor with no arguments. When no arguments are
passed, the constructor will assign the values specifically assigned in the body of the constructor. It
can be zero or any other value. The default constructor can be identified by the name of the class
followed by empty parentheses. Above program uses default constructor. If it is not defined explicitly,
then it is automatically defined implicitly by the system.

Parameterized Constructor

It is possible to pass arguments to constructors. Typically, these arguments help initialize an object
when it is created. To create a parameterized constructor, simply add parameters to it the way you
would to any other function. When you define the constructor's body, use the parameters to initialize
the object.

#include <iostream.h>

#include<conio.h>

class myclass {

it a, b;

public:

myclass(int 1, int j) //parameterized constructor
{a=i; b=j;}

void show() { cout<<a<<"" <<b;}

%

int main() {

myclass ob(3, 5); //call to constructor
ob.show();

return 0;

}

C++ supports constructor overloading. A constructor is said to be overloaded when the same

constructor with different number of argument and types of arguments initializes an object.

Copy Constructors

The copy constructor is a constructor which creates an object by initializing it with an object of the
same class, which has been created previously. If class definition does not explicitly include copy
constructor, then the system automatically creates one by default. The copy constructor is used to:

= Initialize one object from another of the same type.
= Copy an object to pass it as an argument to a function.
= Copy an object to return it from a function.
The most common form of copy constructor is shown here:
classname (const classname &obj) {

// body of constructor

Scanned with CamScanner

}

Here, obj is a reference to an object that is being used to initialize another object. The keyword const
is used because obj should not be changed.

Destructor

A destructor destroys an object after it is no longer in use. The destructor, like constructor, is a
member function with the same name as the class name. But it will be preceded by the character Tilde
(~).A destructor takes no arguments and has no return value. Each class has exactly one destructor. . If
class definition does not explicitly include destructor, then the system automatically creates one by
default. It will be invoked implicitly by the compiler upon exit from the program to clean up storage
that is no longer accessible.

/f A Program showing working of constructor and destructor
#include<iostream.h>
#include<conio.h>

class Myclass{

public:

int X;

Myclass(){ //Constructor
x=10; }

~Myclass(){ //Destructor
cout<<"Destructing....” ;

}

int main(){

Myclass obl, ab2;

cout<<obl x<<" “<<ob2 x;

return 0; }

OQutput:

10 10

Destructing...

Destructing...

Friend function

In general, only other members of a class have access to the private members of the class. However, it
is possible to allow a nonmember function access to the private members of a class by declaring it as a
friend of the class. To make a function a friend of a class, you include its prototype in the class
declaration and precede it with the friend keyword. The function is declared with friend keyword. But
while defining friend function, it does not use either keyword friend or :: operator. A function can be a
friend of more than one class. Member function of one class can be friend functions of another class.
In such cases they are defined using the scope resolution operator.

Scanned with CamScanner

A friend, function has following characteristics.

* [t is not in the scope of the class to which it has been declared as friend.

A friend function cannot be called using the object of that class. If can be invoked like a

normal function without help of any object.

s]t cannot access the member variables directly & has to use an object name dot membership

operator with member name.

e It can be declared either in the public or the private part of a class without affecting its

meaning.

e Usually, it has the object as arguments.

Program to illustrate use of friend function

#include<iostream.h>
#include<conio.h>
class Af

int x, y;

public:

friend void display(A &aobj);

void getdata() {
CIn>>xX>>y;
}
b
void display(A &obj){
cout<<obj.x<<obj.y;
}
int main(){
A a;
a.getdata();
display(a);
getch();
return (;

}

Operator overloading

There is another useful methodology in C++ called operator overloading. The language allows not
only functions to be overloaded, but also most of the operators, such as +, -, *, /, etc. As the name
suggests, here the conventional operators can be programmed to carry out more complex operations.
This overloading concept is fundamentally the same i.e. the same operators can be made to perform

Scanned with CamScanner

different operations depending on the context. Such operators have to be specifically defined and
appropriate function programmed. When an operator is overloaded, none of its original meaning is
lost. It is simply that a new operation, relative to a specific class, is defined. For example, a class that
defines a linked list might use the + operator to add an object to the list. A class that implements a
stack might use the + to push an object onto the stack.

An operator function defines the operations that the overloaded operator will perform relative to the
class upon which it will work. An operator function is created using the keyword operator. The
general form of an operator function is

type classname::operatorf(arg-list) { // operations

}

Here, the operator that you are overloading is substituted for the #, and type is the type of value
returned by the specified operation. Operator functions can be either members or nonmembers of a
class. Nonmember operator functions are often friend functions of the class.

These operators cannot be overloaded:- ., ::, .*, 7

The process of overloading involves the following steps:
* (Create a class that defines the data type that is to be used in the overloading operation.
* Declare the operator function operator op() in the public part of the class.

= Define the operator function to implement the required operations.

Overloading a unary operator using member function

Overloading a unary operator using a member function, the function takes no parameters. Since, there
is only one operand, it is this operand that generates the call to the operator function. There is no need
for another parameter.

Overloading unary minus operator
#include<iostream.h>
#include<conio.h>
class A {
int X,y,Z;
public:
void getdata(int a,int b,int ¢) {
x=a;
y=b:
7=C;
}
void display() {

cout<<"\nx="<<x<<"\ny="<<y<<"\nz="<<z;

Scanned with CamScanner

}

void operator -() //unary minus overload function

int main() {

Aa;

a.getdata(2,3.,4);

a.display();

-a; /factivates operator —() function
a.display();

getch();

return 0;

}

Overloading binary operator

When a member operator function overloads a binary operator, the function will have only one
parameter. This parameter will receive the object that is on the right side of the operator. The object
on the left side is the object that generates the call to the operator function and is passed implicitly by

this pointer. ‘this’ can be used in overloading + operator .

#include<iostream.h>
#include<conio.h>
class Al

int X,y;

public:

void input() {

CIN>>X>>Y;

}

void display() {
cout<<"\nx="<<x<<"\ny="<<y<<"\nx+y="<<x+y;

}

A operator+(A p); /foverload binary + operator

o

Scanned with CamScanner

A A :: operator+(A p) {
At
L.X=X + p.X;
Ly=y +p.y;
return t;
}
int main(){
A al, a2, a3;
al.input();
a2.input();
a3=a2+al; /factivates operator+() function
a3.display();
getch();
return 0;

}

this Pointer

It is facilitated by another interesting concept of C++ called this pointer. “this’ is a C++ keyword.
‘this” always refers to an object that has called the member function currently. We can say that ‘this
is a pointer. It points to the object that has called this function this time. While overloading binary
operators, we use two objects, one that called the operator function and the other, which is passed to
the function. We referred to the data member of the calling object, without any prefix. However, the
data member of the other object had a prefix. Always ‘this’ refers to the calling object place of the
object name.

2

Inheritance

Inheritance is the mechanism by which one class can inherit the properties of another. It allows a
hierarchy of classes to be build, moving from the most general to the most specific. When one class is
inherited by another, the class that is inherited is called the base class. The inheriting class is called
the derived class. In general, the process of inheritance begins with the definition of a base class. The
base class defines all qualities that will be common to any derived class. In essence, the base class
represent the most general description of a set of traits. The derived class inherits those general traits
and adds properties that are specific to that class. When one class inherits another, it uses this general
form:

class derived-class-name : access base-class-name |
7

Here access is one of the three keywords: public, private, or protected. The access specifier
determines how elements of the base class are inherited by the derived class.

Scanned with CamScanner

When the access specifier for the inherited base class is public, all public members of the base class
become public members of the derived class. If the access specifier is private, all public members of
the base class become private members of the derived class. In either case, any private members of the
base class remain private to it and are inaccessible by the derived class.

It is important to understand that if the access specifier is private, public members of the base
become private members of the derived class. If the access specifier is not present, it is private by
default.

The protected access specifier is equivalent to the private specifier with the sole exception that
protected members of a base class are accessible to members of any class derived from that base.
Outside the base or derived classes, protected members are not accessible. When a protected member
of a base class is inherited as public by the derived class, it becomes a protected member of the
derived class. If the base class is inherited as private, a protected member of the base becomes a
private member of the derived class. A base class can also be inherited as protected by a derived class.
When this is the case, public and protected members of the base class become protected members of
the derived class (of course, private members of the base remain private to it and are not accessible by
the derived class).

Program to illustrate concept of inheritance
#include<iostream.h>
#include<conio.h>
class base /fbase class
{
int X,y;
public:
void show() {
cout<<"In base class";
}
b
class derived : public base /fderived class
{
int a,b;
public:
void show2() {
cout<<"\nln derived class";
}
|3
int main() {
derived d;

d.show(); /fuses base class’s show() function

Scanned with CamScanner

d.show2(); /fuses derived class’s show2() function

getch();

return (;

}
Types of Inheritances

Single Inheritance

The process in which a derived class inherits traits from only one base class, is called single
inheritance. In single inheritance, there is only one base class and one derived class. The derived class
inherits the behavior and attributes of the base class. However the vice versa is not true. The derived
class can add its own properties i.e. data members (variables) and functions. It can extend or use
properties of the base class without any modification to the base class. We declare the base class and

derived class as given below:

class base_class {

class derived_ class : visibility-mode base_ class {

3

Program to illustrate concept of single inheritance

#include<iostream.h>
#include<conio.h>
class base //base class
{
int X,y;
public:
void show() {
cout<<"In base class";
}
b
class derived : public base //derived class
{
int ab;
public:
void show2() {

cout<<"\nln derived class";

Scanned with CamScanner

}
};

int main() {

derived d;

d.show(); /fuses base class’s show() function
d.show2(); /fuses derived class’s show2() function
getch();

return 0;

}

Ambiguity in single Inheritance

Whenever a data member and member functions are defined with the same name in both the base and
derived class, ambiguity occurs. The scope resolution operator must be used to refer to particular class
as: object name.class name :: class member

Multiple Inheritance

The process in which a derived class inherits traits from several base classes, is called multiple
inheritance. In Multiple inheritance, there is only one derived class and several base classes. We
declare the base classes and derived class as given below:

class base_class1{

class base_class2{

):

class derived_ class : visibility-mode base_ class1 . visibility-mode base_ class2 {

A

Multilevel Inheritance
The process in which a derived class inherits traits from another derived class, is called Multilevel
Inheritance. A derived class with multilevel inheritance is declared as :

class base_class {

}):

class derived_ class! : visibility-mode base_ class {

):

class derived_ class 2: visibility-mode derived_ classl1 {

Here, derived_ class 2 inherits traits from derived_ class 1 which itself inherits from base_class.

Scanned with CamScanner

Hierarchical Inheritance

The process in which traits of one class can be inherited by more than one class is known as
Hierarchical inheritance. The base class will include all the features that are common to the derived
classes. A derived class can serve as a base class for lower level classes and so on.

Hybrid Inheritance

The inheritance hierarchy that reflects any legal combination of other types of inheritance is known as
hybrid Inheritance.

Overriding

Overriding is defined as the ability to change the definition of an inherited method or attribute in a
derived class. When multiple functions of the same name exist with different signatures it is called
function overloading. When the signatures are the same, they are called function overriding. Function
overriding allows a derived class to provide specific implementation of a function that is already
provided by a base class. The implementation in the derived class overrides or replaces the
implementation in the corresponding base class.

Virtual base classes
A potential problem exists when multiple base classes are directly inherited by a derived class. To
understand what this problem is, consider the following class hierarchy:

Here the base class Base is inherited by both Derivedland Derived2. Derived3 directly inherits both
Derivedland Derived2.However, this implies that Base is actually inherited twice by Derived3.First it
is inherited through Derivedl, and then again through Derived2.This causes ambiguity when a
member of Base is used by Derived3. Since two copies of Base are included in Derived3, is a
reference to a member of Base referring to the Base inherited indirectly through Derivedlor to the
Base inherited indirectly through Derived2? To resolve this ambiguity, C++ includes a mechanism by
which only one copy of Base will be included in Derived3. This feature is called a virtual base class.

In situations like this, in which a derived class indirectly inherits the same base class more than once,
it is possible to prevent multiple copies of the base from being present in the derived class by having
that base class inherited as virtual by any derived classes. Doing this prevents two or more copies of
the base from being present in any subsequent derived class that inherits the base class indirectly. The
virtual keyword precedes the base class access specifier when it is inherited by a derived class.

// This program uses a virtual base class.
#include <iostream>

using namespace std;

class Base {

public:

nt 1;

Scanned with CamScanner

// Inherit Base as virtual
classDerived] : virtual publicBase {
public:

int j;

B

// Inherit Base as virtual here, too
classDerived?2 : virtual publicBase {
public:

int k;

)

// Here Derived3 inherits both Derivedl and Derived?2.

// However, only one copy of base is inherited.
class Derived3 : publicDerived 1, publicDerived2 {
public:

int product() { return i*j*k; }

 H

int main() {

Derived3 ob;

ob.i = 10; // unambiguous because virtual Base
ob.j=3;

obk =5;

cout << "Product is: " << ob.product() << "\n";

return 0;

}

If Derivedland Derived2 had not inherited Base as virtual, the statement ob.i=10 would have been
ambiguous and a compile-time error would have resulted. It is important to understand that when a
base class is inherited as virtual by a derived class, that base class still exists within that derived class.

For example, assuming the preceding program, this fragment is perfectly valid:

Derivedl ob;

ob.1 = 100;

Scanned with CamScanner

Friend Classes

It is possible for one class to be a friend of another class. When this is the case, the friend class and all
of its member functions have access to the private members defined within the other class. For

example,
// Using a friend class.
#include<iostream.h>
#include<conio.h>
class A{

int x, y;

public:

friend void display(A &obj);

friend class B;
void getdata() {
cin>>xX>>y;
}
|5
class B{
int p.q;
public:
void get(A &obj) {
p=obj.x;
q=0obj.y:
}
|
void display(A &obj){
cout<<obj.x<<obj.y;
}
int main(){
Aa;
Bb;
b.get(a);
a.getdata();
display(a);
getch();

Scanned with CamScanner

return 0;

}

It is critical to understand that when one class is a friend of another, it only has access to names
defined within the other class. It does not inherit the other class. Specifically, the members of the first
class do not become members of the friend class.

Scanned with CamScanner

Unit-IV

Pointer

A pointer is a variable that contains a memory address. Very often this address is the location of
another object, such as a variable. For example, if x contains the address of y, then x is said to “point
to” y. Pointer variables must be declared as such. The general form of a pointer variable declaration is

type *var-name;

Here, type is the pointer’s base type. The base type determines what type of data the pointer will be
pointing to. var-name is the name of the pointer variable.

To use pointer:
» We define a pointer variable.
e Agsign the address of a variable to a pointer.

» Finally access the value at the address available in the pointer variable. This is done by using
unary operator * that returns the value of the variable located at the address specified by its

operand.
Example:
int a=10; //mormal variable
mnt*p; /{declare pointer
p = &a; // Assign the address of a variable “a” to a pointer “p”
cout<<"a="<<*p: //prints a=10
OBJECT POINTERS

We have been accessing members of an object by using the dot operator. However, it is also possible
to access a member of an object via a pointer to that object. When a pointer is used, the arrow
operator (->) rather than the dot operator is employed. We can declare an object pointer just as a
pointer to any other type of variable is declared. Specify its class name, and then precede the variable
name with an asterisk. To obtain the address of an object, precede the object with the & operator, just
as you do when taking the address of any other type of variable.

Here is a simple example,
#include< iostreanr>
#include<conio.h>
class myclass {
int a;
public:
myclass(int x); //constructor
int get();

b

myclass :: myclass(int x) {

Scanned with CamScanner

a=x;
}

int myclass :: get() {

return a;

}

int main() {

myclass ob(120); //create object

myclass *p; //create pointer to object
p=&uob; //put address of ob into p

cout <<"value using object: " <<ob.get();
cout <<"\n";

cout <<"value using pointer: " <<p->get();
return(l;

}

Notice how the declaration : myclass *p; creates a pointer to an object of myclass. It is
important to understand that creation of an object pointer does not create an object. It creates just a
pointer to one. The address of ob is put into p by using the statement:

p=&ob;

Finally, the program shows how the members of an object can be accessed through a pointer.

Pointers to Derived Types

Pointers to base classes and derived classes are related in ways that other types of pointers are not. In
general, a pointer of one type cannot point to an object of another type. However, base class pointers
and derived objects are the exceptions to this rule. In C++, a base class pointer can also be used to
point to an object of any class derived from that base. For example, assume that you have a base class
called B and a class called D, which is derived from B. Any pointer declared as a pointer to B can also
be used to point to an object of type D. Therefore, given

B *p; /fpointer p to object of type B
B B_ob; //object of type B
D D_ob; //object of type D

both of the following statements are perfectly valid:
p=4&B_ob; //p points to object B
p=4&D_ob; //p points to object D, which is an object derived from B

A base pointer can be used to access only those parts of a derived object that were inherited from the
base class. Thus, in this example, p can be used to access all elements of D_ob inherited from B_ob.
However, elements specific to D_ob cannot be accessed through p.

Scanned with CamScanner

Another point to understand is that although a base pointer can be used to point to a derived object,
the reverse is not true. That is, you cannot access an object of the base type by using a derived class
pointer.

C++ Virtual Function

A virtual function is a member function that is declared within a base class and redefined by a derived
class. In order to make a function virtual, you have to add keyword virtual in front of a function
definition. When a class containing a virtual function is inherited, the derived class redefines the
virtual function relative to the derived class. The virtual function within the base class defines the
form of the interface to that function. Each redefinition of the virtual function by a derived class
implements its operation as it relates specifically to the derived class. That is, the redefinition creates
a specific method. When a virtual function is redefined by a derived class, the keyword virtual is not
needed. A virtual function can be called just like any member function. However, what makes a
virtual function interesting, and capable of supporting run-time polymorphism, is what happens when
a virtual function is called through a pointer. When a base pointer points to a derived object that
contains a virtual function and that virtual function is called through that pointer, C++ determines
which version of that function will be executed based upon the type of object being pointed to by the
pointer. And this determination is made at run time. Therefore, if two or more different classes are
derived from a base class that contains a virtual function, then when different objects are pointed to by
a base pointer, different versions of the virtual function are executed.

// A simple example using a virtual function.
#include<iostream.h>

#include<conio.h>

class base {

public:

virtual void fune() {

cout<< "Using base version of func(): ";

}

b

class derived1 : public base {

public:

voidfunc() {

cout<< "Using derivedl's version of func(): ";
}

|5

class derived2 : public base {

public:

voidfunc() {

Scanned with CamScanner

cout<< "Using derived2's version of func(): ";

}

|

int main() {

base *p;

base ob;

derivedl d_obl;

derived2 d_ob2;

p = &ob;

p- >func(); // use base's func()

p = &d_obl;

p- >func(); // use derivedl's func()
p = &d_ob2;

p- >func(); // use derived2's func()
return 0;

}

Pure virtual functions

Sometimes when a virtual function is declared in the base class, there is no meaningful operation for it
to perform. This situation is common because often a base class does not define a complete class by
itself. Instead, it simply supplies a core set of member functions and variables to which the derived
class supplies the remainder. When there is no meaningful action for a base class virtual function to
perform, the implication is that any derived class must override this function. To ensure that this will
occur, C++ supports pure virtual functions. A pure virtual function has no definition relative to the
base class. Only the function prototype is included. To make a pure virtual function, use this general
form:

virtual type func-name(parameter-list) = 0;

The key part of this declaration 1s the setting of the function equal to 0. This tells the compiler that no
body exists for this function relative to the base class. When a virtual function is made pure, it forces
any derived class to override it. If a derived class does not, a compile-time error results. Thus,
making a virtual function pure is a way to guaranty that a derived class will provide its own
redefinition.

Abstract class

When a class contains atleast one pure virtual function, it is referred to as an abstract class. Since, an
abstract class contains atleast one function for which no body exists, it is, technically, an incomplete
type, and no objects of that class can be created. Thus, abstract classes exist only to be inherited. It is
important to understand, however, that you can still create a pointer to an abstract class, since it is
through the use of base class pointers that run-time polymorphism is achieved. (It is also possible to
have a reference to an abstract class.) .

Scanned with CamScanner

C++ Streams

The C++ I/0 system operates through streams. A stream is logical device that either produces or
consumes information. A stream is linked to a physical device by the C++ I/O system. All streams
behave in the same manner, even if the actual physical devices they are linked to differ. Because all
streams act the same. the I/O system presents the programmer with a consistent interface.

Two types of streams:
Output stream: a stream that takes data from the program and sends (writes) it to destination.

Input stream: a stream that extracts (reads) data from the source and sends it to the program.

Input Source

. — || (keyboard, file, |
laput Stisam network, program)
C++ Program
Output Sink
L — -]| (console, file, i
Output Stream network, program) |
‘-ﬂ-_____________.a-"

C++ provides both the formatted and unformatted IO functions. In formatted or high-level 10, bytes
are grouped and converted to types such as int, double, string or user-defined types. In unformatted or
low-level 10, bytes are treated as raw bytes and unconverted. Formatted IO operations are supported
via overloading the stream insertion (<<) and stream extraction (>>) operators, which presents a
consistent public 10 interface.

C++ provides supports for its I/O system in the header file< iostream>. Just as there are different
kinds of I/O (for example, input, output, and file access), there are different classes depending on the
type of I/0. The following are the most important stream classes:

Class istream :- Defines input streams that can be used to carry out formatted and unformatted input
operations. It contains the overloaded extraction (>>) operator functions. Declares input functions
such get(), getline() and read().

Class ostream :- Defines output streams that can be used to write data. Declares output functions put
and write(). The ostream class contains the overloaded insertion (<<) operator function

When a C++ program begins, these four streams are automatically opened:

Stream Meaning Default Device
cin Standard input Keyboard

cout Standard output Screen

cerr Standard error Screen

clog Buffer version of cerr Screen

Scanned with CamScanner

Cin and Cout objects

cout is an object of class ostream. The cout is a predefined object that represents the standard output
stream in C++. Here, the standard output stream represents monitor. In the language of C++, the <<
operator is referred to as the insertion operator because it inserts data into a stream. It inserts or sends
the contents of variable on its right to the object on its left.

For example:
cout << “"Programming in C++";

Here << operator is called the stream insertion operator and is used to push data into a stream (in this
case the standard output stream)

cin is an object of class istream. cin is a predefined object that corresponds to the standard input
stream. The standard input stream represents keyboard. The >> operator is called the extraction
operator because it extracts data from a stream. It extracts or takes the value from the keyboard and
assigns it to the variable on it’s right.

For example:
int number;
cin >> number;

Here >> operator accepts value from keyboard and stores in variable number.
Unformatted Input/Output Functions

Functions get and put
The get function receives one character at a time. There are two prototypes available in C++ for get as
given below:

get (char *)

get ()

Their usage will be clear from the example below:
char ch ;

cin.get (ch);

In the above, a single character typed on the keyboard will be received and stored in the character
variable ch.

Let us now implement the get function using the other prototype:
charch ;

ch = cin.get();

This is the difference in usage of the two prototypes of get functions.

The complement of get function for output is the put function of the ostream class. It also has two
forms as given below:

Scanned with CamScanner

cout.put (var);

Here the value of the variable var will be displayed in the console monitor. We can also display a
specific character directly as given below:

cout.put (‘a’);

getline and write functions

C++ supports functions to read and write a line at one go. The getline() function will read one line at a
time. The end of the line is recognized by a new line character, which is generated by pressing the
Enter key. We can also specify the size of the line.

The prototype of the getline function is given below:
cin.getline (var, size);

When we invoke the above statement, the system will read a line of characters contained in variable
var one at a time. The reading will stop when it encounters a new line character or when the required
number (size-1) of characters have been read, whichever occurs earlier. The new line character will be
received when we enter a line of size less than specified and press the Enter key. The Enter key or
Return key generates a new line character. This character will be read by the function but converted
into a NULL character and appended to the line of characters.

Similarly, the write function displays a line of given size. The prototype of the write function is given
below:

write (var, size) ;

where var is the name of the string and size is an integer.

Formatted I/0 via manipulators

The C++ I/0O system allows you to format I/O operations. For example, you can set a field width,

specify a number base, or determine how many digits after the decimal point will be displayed. /O
manipulators are special I/O format functions that can occur within an I/O statement.

Manipulator Purpose Input/Ouput
boolalpha Turns on boolaphaflag Input/Output
dec Turns on decflag Input/Output
endl Outputs a newline character and flushes the stream Output

ends Outputs a null Output
fixed Turns on fixed flag Output

flush Flushes a stream Output

hex Turns on hexflag Input/Output
internal Turns on internalflag Output

left Turns on leftflag Output
noboolalpha Turns off boolalphaflag Input/Output

Scanned with CamScanner

noshowbase
noshowpoint
noshowpos
noskipws
nounitbuf
nouppercase

oct

Turns off showbaseflag
Turns off showpointflag
Turns off showposflag
Turns off skipwsflag
Turns off unitbufflag
Turns off uppercaseflag

Turns on octflag

resetiosflags(fmtflads f) Turns off the flags specified in f

right

scientific

setbase(int base)

setfill(int ch)

setiosflags(fmtflags f)

setprecision(int p)

setw(int w)
showbase
showpoint
showpos
skipws
unitbuf
uppercase

WS

The following program demonstrates several of the I/O manipulators:
#include<iostream>
#include<iomanip>

using namespacestd;

int main() {

Turns on rightflag

Turns on scientificflag

Sets the number base to base
Sets the fill char ch

Turns on the flags specified by f
Sets the number of digits of precision
Sets the field width to w

Turns on showbaseflag

Turns on showpointflag

Turns on showposflag

Turns on skipwsflag

Turns on unitbuf

Turns on uppercaseflag

Skips leading white space

cout<< hex << 100 << endl;

cout<< oct<< 10 << endl;

cout<< setfill('X") << setw(10);

cout<< 100 << " hi " << endl;

return(;

Output
Output
Output

Input
Output
Output
Input/Output
Input/Output
Output
Output
Input/Output
Output
Input/Output
Output
Output
Output
Output
Output
Input
Output
Output

Input

Scanned with CamScanner

}

This program displays the following:
64

13

XXXXXXX144 hi
File I/O

A file is a bunch of bytes stored on some storage devices like hard disk, floppy disk etc. File I/O and
console I/O are closely related. In fact, the same class hierarchy that supports console I/O also
supports the file I/O. To perform file I/O, you must include <fstream> in your program. It defines
several classes, including ifstream, ofstream and fstream. In C++, a file is opened by linking it to a
stream. There are three types of streams: input, output and input/output. Before you can open a file,
you must first obtain a stream.

To create an input stream, declare an object of type ifstream.
To create an output stream, declare an object of type ofstream.
To create an input/output stream, declare an object of type fstream.

For example, this fragment creates one input stream, one output stream and one stream capable of
both input and output:

ifstream in; //input;
fstream out; // output;
fstream io; // input and output

Once you have created a stream, one way to associate it with a file is by using the function open().
This function is a member function of each of the three stream classes. The prototype for each is
shown here:

void ifstream::open(const char*filename,openmode mode=ios::in);
void ofstream::open(const char*filename.openmode mode=ios::out | i0s::trunc);
void fstream::open(const char*filename,openmode mode=ios::in | ios::out);

Here filename is the name of the file, which can include a path specifier. The value of the mode
determines how the file is opened. It must be a value of type open mode, which is an enumeration
defined by ios that contains the following value:

« 10s::app: causes all output to that file to be appended to the end. Only with files capable of output.
* ios::ate: causes a seek to the end of the file to occur when the file is opened.

« 10s::out: specify that the file is capable of output.

« ios::.in: specify that the file is capable of input.

« ios::binary: causes the file to be opened in binary mode. By default, all files are opened in text
mode. In text mode, various character translations might take place, such as carriage return/linefeed

Scanned with CamScanner

sequences being converted into newlines. However, when a file is opened in binary mode, no such
character translations will occur.

+ ios::trunc: causes the contents of a pre-existing file by the same name to be destroyed and the file to
be truncated to zero length. When you create an output stream using ofstream, any pre-existing file is
automatically truncated.

All these flags can be combined using the bitwise operator OR (]). For example, if we want to open
the file example.bin in binary mode to add data we could do it by the following call to member
function open:

ofstream myfile;

myfile.open ("example.bin", ios::out | ios::app | 10s::binary);
Each of the open member functions of classes ofstream, ifstream and fstream has a default mode that
is used if the file is opened without a second argument:

Class default mode parameter
ofstream ios::out

ifstream ios::in

fstream ios::in|ios::out

Closing file

When we are finished with our input and output operations on a file we shall close it so that the
operating system is notified and its resources become available again. For that, we call the stream'’s
member function close. This member function takes flushes the associated buffers and closes the
file:

myfile.close();

Once this member function is called, the stream object can be re-used to open another file, and the file
is available again to be opened by other processes. In case that an object is destroyed while still
associated with an open file, the destructor automatically calls the member function close.

To write to a file, you construct a ofsteam object connecting to the output file, and use

the ostream functions such as stream insertion <<, put () and write(). Similarly, to read from an
input file, construct an ifstream object connecting to the input file, and use the istream functions
such as stream extraction >>, get (), getline() and read().

There are two ways of storing data in a file as given below:

Binary form and Text form
Suppose, we want to store a five digit number say 19876 in the text form, then it will be stored as five
characters. Each character occupies one byte, which means that we will require five bytes to store
five-digit integer in the text form. This requires storage of 40 bits. Therefore, if we can store them in
binary form, then we will need only two bytes or 16 bits to store the number. The savings will be
much more when we deal with floating point numbers.

When we store a number in text form, we convert the number to characters. However, storing a
number in binary form requires storing it in bits. However, for a character, the binary representation
as well as the text representation are one and the same since, in either case, it occupies eight bits. The
text format is easy to read. We can even use a notepad to read and edit a text file. The portability of

Scanned with CamScanner

text file is also assured. In case of numbers, binary form is more appropriate. It also occupies lesser
space when we store it in binary form and hence it will be faster. The default mode is text.

Unformatted, binary I/0

C++ supports a wide range of unformatted file I/O functions. The unformatted functions give you
detailed control over how files are written and read. The lowest-level unformatted /O functions are
get()and put(). You can read a byte by using get() and write a byte by using put(). These functions
are member functions of all input and output stream classes, respectively. The get()function has many
forms, but the most commonly used version is shown here, along with put():

istream &get(charé&ch);
ostream &put(charé&ch);

To read and write blocks of data, use read()and write()functions, which are also member functions of
the input and output stream classes, respectively. Their prototypes are:

istream &read(char®buf, streamsize num);
ostream &write(const char®*buf, streamsize num);

The read() function reads num bytes from the stream and puts them in the buffer pointed to by buf.
The write() function writes num bytes to the associated stream from the buffer pointed by buf. The
streamsize type is some form of integer. An object of type streamsize is capable of holding the largest
number of bytes that will be transferred in any I/O operation. If the end of file is reached before num
characters have been read, read() stops and the buffer contains as many characters as were available.

When you are using the unformatted file functions, most often you will open a file for binary rather
than text operations. The reason for this is easy to understand: specifying ios::binary prevents any
character translations from occurring. This is important when the binary representations of data such
as integers, floats and pointers are stored in the file. However, it is perfectly acceptable to use the
unformatted functions on a file opened in text mode, as long as that the file actually contains only
text. But remember, some character translation may occur.

Random Access

File pointers
C++ also supports file pointers. A file pointer points to a data element such as character in the file.
The pointers are helpful in lower level operations in files. There are two types of pointers:

get pointer
put pointer

The get pointer is also called input pointer. When we open a file for reading, we can use the get
pointer. The put pointer is also called output pointer. When we open a file for writing, we can use put
pointer. These pointers are helpful in navigation through a file. When we open a file for reading, the
get pointer will be at location zero and not 1. The bytes in the file are numbered from zero. Therefore,
automatically when we assign an object to ifstream and then initialize the object with a file name, the
get pointer will be ready to read the contents from 0™ position. Similarly, when we want to write we
will assign to an ofstream object a filename. Then, the put pointer will point to the 0™ position of the
given file name after it is created. When we open a file for appending, the put pointer will point to the

Scanned with CamScanner

0* position. But, when we say write, then the pointer will advance to one position after the last
character in the file.

File pointer functions
There are essentially four functions, which help us to navigate the file as given below Functions
Function Purpose

tellg() Returns the current position of the get pointer
seekg() Moves the get pointer to the specified location
tellp() Returns the current position of the put pointer
seekp() Moves the put pointer to the specified location

//To demonstrate writing and reading- using open
#include<fstream.>

#include<iostream>

int main(){ /fWriting
ofstream outf;

outf open(“Temp2.txt™);

outf<<*Working with files is fun\n”;
outf<<"Writing to files 1s also fun\n™;
outf.close();

char buff[80];

ifstream inf;

inf.open(“Temp2.txt”); //Reading
while(inf){

inf.getline(buff, 80);

cout<<buff<<*\n”;

}

inf.close();

return 0;

}

Scanned with CamScanner

(20518) " Roll No. J83.22)93 %
B. Sc. (Com. Sc.)-1V Sem.

NP-3607

B. Sc. (Com. Science) Examination, May 2018
OOP Through C++

(BCS-403)

Time : Three Hours] [Maximum Marks : 75

Note : Attempt questions from all Sections as per

instructions.

Section-A
(Very Short Answer Questions)
Answer all the five questions. Each question carries
3 marks. Very short answer isrequired. ~ 3x5=135

L What do you understand by object oriented

programming ?

Scanned with CamScanner

Scanned with CamScanner

(2)
2 What s token ?
3 What do you understand by control structure ?
4. Whatis user defined data type ? Give one example.
5i What is polymorphism ?

Section-B
(Short Answer Questions)
Answer any rwo questions out of the following
three questions. Each question carries 7% marks.
Short answer is required. Tax2=15
6. What do you understand by class ? Explain with

the suitable program using multiple inheritance.

7. What is abstract classes ? Explain with the suitable

example.

8. What do you understand by static member function?

Explain with the suitable example.

NP-3607

10.

12.

13.

oy

Section-C

(Detailed Anmerdum :
Answer any three questions out of the ﬁ:ﬂcmng
five questions. Each question carries 15 marks.
Answer i required in detail, 15%3=45

What is constructor ? Explain with the suitable
example using parameterized constructor.

What do you understand by hybrid inheritance ?
Explain with the suitable example.

What do you understand by pure virtual function ?
Write down the rules for operator overloading.

What is destructor ? Explain with the suitable

example.

NP-3607-3-

Scanned with CamScanner

Scanned with CamScanner

N - _ (Printed Pages 3)
' (20517) Roll No. |$32%ete s

'B.Sc. (Com.Sc.)-IV Sem.

NP-3607
B.Sc. Examination, May 2017
~ Computer Science
OOP Through C++
(BCS-403)
Time : Three Hours|] _ [Maximum Marks : 75

Note: Attempt all the sections as per instruc-

tions.
Section-A
Note : A&ehpt ail five qulesﬁons. Each question car-
ries three marks. Very short answer is re-
quired not exceeding 75 words, 3x5=15
1. What is difference b)w Object and Classes?

2. Describe the inheritahce as applied to OOP.

P.T.O.

Scanned with CamScanner

Scanned with CamScanner

ey

4. What are the advantage of using new Op-

3. - Define the term 'Name space'.

erator and compared to function malloc ()?
5. When do we make a virtual function 'pure'?
Section-B "

Note: Attempt any two questions out of the
fu]luv.;vlng 3 questions. Each question car-
ries 7.5 marks. short-answer is required
not exceeding 20q wards.

6. Whatis destructor? Give an example in C++
to illustrate destructor?

7/. What is friend function? What are the merits
and demerits of using friend functiogs,

8 (2) Whatis virtual Base Class
(b) Describe an abstract Classes
| Section-C _
Note: Attempt any three (3) questions out of

the following five (5) questions. Each
NP-3607\2

7

}[}4

11.

question carrles 15 marks, Answer ls m-
quired in detail.
Explain the use of the Multiple inheritance and =
multilevel inheritance with help of the suit-
able programming example? i

What are the constructor and explain all the
types of the constructor with help of ex-

-

ample.
What is Base and Drive Classes? Explain it -

o
with the help of suitable example. #

. What is operator overloading Explain in de-

tail about the unary operator overloading with

example program.

\%Nhat is visibility mode? What are the differ-

ence between inheritingj'a_x class with public
= 1= - s = = = - _—__,__-l——-

c——-"'-__'-_—______'_‘—w—-_—_—"
and private visibility mode?
_———————

L

1

NP-3607T\3

Scanned with CamScanner

Scanned with CamScanner

' 75} e icpostign method .8
N runf.ulx,e‘:m}:x mr&entj:d rourded-
o m&pm :....-._....: ¥ .5

s
' waqshm a.iswar tm-.uw}

Scanned with CamScanner

Scanned with CamScanner

. _.Nnta Awau_ﬂnﬂmsﬁom £ach q
- ton mw“ﬂﬂ ’““‘
g |
. "."
o
i £i- P

‘Ul-
oy
I—
.I e
ik

enr
... i)

i ;11903.5, (1.95)15 o ;39§5&
(4:05}1" = 3.2{;714. n,.us)*‘__ a. 19!]L8:,
[maji‘ i s.am -

,310043214:

J:-" | 3:0086002

3.0128372 ¥

£ 3‘.6176'3—3‘3

Scanned with CamScanner

Scanned with CamScanner

AL
»

ik

Pt

"

%
El o

-third rule to approximate vallg.-a

- L flog 2. '
.I. o l

12, Fmd_}@_.lf v{x) is I:he solution of

gl =3 (X +Y) assuming v{D) -2 y{0.5) 2. '5:*1,

¥(1:0)=3.595 and y(1. 5)—4 968.. l

&3 (a) te and prove Lagrange s formula {

Inl:erpolaﬁon

In an ex:.rnlnatlcn, the number of carj-
i “‘f“ Wi,

cettam Iimits A

ig lnau m?rk.: betwee

; re as f-allows
Marks .TJ'NU._ of candidates
0-19: & . 4t
20-39 . i 62
40-59 T . 65 |
_ 60-79 ' 50 . l
S 80-99. 17 i
“\‘.“'-'?-}'_A,?l Estimate the number of ca nchdates wh

. Obtained fewg 0 70 m

Ay
h&.&;. p

_______._.-
=== =

: BSG (Com.Sc.) IV Sem.

Qt >

:

2
N

M nted Pages 4)

0. 323898

EsssssissanEnamany

(20614)

NP-
B.Sc. (Com.Sc.) E;

605
imination, June 2014 I
Computer Oriented Numerical Techniques ;p
(BCS-401) i

Time : Three Hours | [Maximum Marks : 75

Note: Attempt all guestions as per given

tions. Studenlgan use calculator.
Seclion - A

(Very short answer questions)

. Note: Attempt all five questions. Each question

carries three marks. Very short answer
is required not exceeding 75 words.

Find the relative error in computation of x+y
for x=11.75 and y=7.23 having absolute
errors AX = 0.002 and Ay = 0.005.

Scanned with CamScanner

Scanned with CamScanner

- =) =
followingi p and ¢ ith the exact so- |
| s Xyt 12 ljtion
o f(x) : 22 39 106 216 %nd the léa line for the following
' P Show that the co-efficient of correlation be- data points : ‘4
\) tween two varlates X and y may be ex. (-2, 1), (U; 3); 2, 6), (4, 8) and (6, 13), Ty
. pressed in the. ﬁ}rm —-——[>y -X. y] ' Sghon-c a
i . Note: Attempt any thrae questions out of the &
Where X ; ¥ are A__r:15_and Gy , O, are stan- ‘ following ﬂve questmns Each question G -
'dard deviations. - carries 15 marks. !',[‘ : !
()Wrennate between Trapezoidal rule and | o @9 Describe Wmﬁ '
Simpsen’s rule for ndmerical integration. (b) The Newton-Raphson's method to find L
: Sectﬁn' 5 S e < . the roctoﬁg-x-m—o witichr is-nearer—— [P
[Note: ‘Attempt any two questions out of the fol- tO 2, correctto three places of decimal, :
:l i Jowing 3. questions. Each question carries. (a) IquQN x is: normally distributed with
| v - 7.5 marks. meéan 4 and variance 4, find the prob-
dy abllity of 1.202 < x < 83180000. (Given
e ; log

10 1202 = 3.08 and log,, 8318 =3.92)
Describe chi-square test of significance.

-

R ; (%
125 216 - | |

rd's rnélth,pcl

Scanned with CamScanner

Scanned with CamScanner

13; (2) The following data are number of seeds

germinating out of 10 on damp filter

Paper for 80 sets of seeds. Fit a hino—

mial distribution to these data:

X 012345678910
,f_62028123600000

\{})t Explain why there are two lines of re-

X {152

equations that may be associated with

-

gression. Write down two regression
—_—

the following pairs of values: 3'
W - el 75

114

128

154

144

153

141147| 136

Y '193

300

414

594

676

549

320(483|481

e =i

H?t"ﬁﬂﬁ\s / ..

e L
B

N | (Printed Pages 6)
(20517 Roll No. 153282 345
B.Sc, (Com.Se.) IV Sem.

NP-3605

B.Sec. (Com. Sc.) Examination, May 2017
Computer Oriented Numerical
Techniques

(BCS-401)

Time : Three Hours] [Maximum Marks : 75
Note :Attempt all questiqns as per given direc-
tions. Students can use calculator.
Section - A
(Very Short Answer Questions)
Note : Attempt all five que;sﬁtms Each question car-
ries three marks. Very short answer is re-

quired not exceeding 75 words. 3%x5=15

RT.0.

Scanned with CamScanner

Scanned with CamScanner

PO ER &S

- P
1. Find the quotient q:é;:fvmvhere x:é§.§36 and Section=B
'y=1.32, both x anﬁelng correct to the
digits given. Find also the re'laltlve error in

‘Note : Attempt any two questions out of the

. following three guestions. 7.5%2=15
the result. e~ SR 9 .
3 . 6. Find the value of y(1.1) using Runge - Kutta
-2. Show Ay, =¥y, : -— :
i = method of fourth order given that
3. Prove that, If f(x) be a polynomial of n*" de- d o . /}
SL=y* +xy, ¥(1)=1.0, take h=0.05. |5
gree in x, then the n' difference of f(x) is * f :
7. Find the root of the equation £
constant-and A" f(x)=0. : |-9§
)) 2_x=cusx+ 3, ran
‘}/”Calculate the value of the integral ;
S !Qv correct to three decimal places by using it-
532 . .. 3
L logxdx by Simpson's ¢ rule. _ eration method.

‘5/./ﬁ-;=_- means of two sample of size 50 and ‘-3/‘_3'5",9 Lagrange's interpolation formula, find
100 respectively are:54.1-and 50.3; the the form of the fuﬁnc‘thnz(x} fm!“ the fol-
standard deviations are 8,7. Find the mean lowing table,
and standard deviation of the sample of size] X l 0 \ 1 3 tj" ; \141 ‘

150 by combining the two samples, ; \i ‘ -12 \ 0 12 \ 24 \
Logx cf / | S Mg Fep bog)
NP3sos2 Yy 5/,] 2 NP-3605\3 : PT.0.

Scanned with CamScanner

Scanned with CamScanner

{6)
Father | Son
65 G8
63 66
67 68
G4 65
68 69
62 G6
70 68
66 65
68 71
67 67
69 68
71 70

Calculate coefficient of rank correlation.

NP-3605-6-

o~ o=

| (20518) Roll No, 16328133 %.....
| B.Se.(Com. Se.)-IV Sem.

|
NP-3605
B. Sc. (Com. Science) Examination, May 2018
Computer Oriented Numerical Techniques

(BCS-401)

Time : Three Hours] [Maximum Marks : 75

Note : Attempt questions from all Sections; as per
instructions. Students can use calculator.
Section-A
(Very Short Answer Questions)
Attempt all the five questions. Each question

carries 3 marks. Very short answer is required
not exceeding 75 words. 3x5=15

. If u=3v"-6v, find the percentage error in y at
v=1, il the error in v is 0.05.

2. Define the operators A, V, 8 and E~' and evaluate

Az.tj.

Scanned with CamScanner

Scanned with CamScanner

<

(2)

Apply Lagrange's formula to find the form of (e
function given by :

x [o[1]2 |
@l 36 | 1w0]

46 ; 1
Evaluate L log.(x)dx by Simpson's 3 rule,

log,4.0=1.38, log,4.2=143,
log, 4.4=1.48, log,4.6=1.52.

using the data

A random variable y has the following
probability function :

x | -2 -1] 0|1 2 [3
p(x)| 01| k |02 | 2k | 03

find 'k .

Section-B
(Short Answer Questions)

Attempt any fwo questions out of the following
three questions. Each question carries 7% marks.

Short answer is required. 7%x%2=15

NP-3605

(3)
6. Use the Runga-Kutta fourth order method to
dy _ 2 2
solve 102‘——3 +¥7, ¥(0)=1 for the interval
0<x<04 with h=0.1.
7. From the following table find y when x=0.15:
x 101]02]0304T05]06]
2 (a|s|7[s|w0]
8.

Use the iteration method to find a real root of the
follwoing equation correct up to three decimal places:

e* =cotx.
Section-C
(Detailed Answer Questions)
Answer any three questions out of the following

five questions. Each question carries 15 marks.

Answer is required in detail. 15%3=45

9. (a) 200 digits we chosen al random from a set
of tables. The frequencies of the digits were :

Pigils Tofr[2]3]¢ REBEL

Frequency| 18 |19] 23] 2116 25 (22| 20{21]15]

NP-3605

Scanned with CamScanner

Scanned with CamScanner

10.

(b)

(a)

(b)

(4)
Use x* test to assess the correctness of
hypothesis that the digits were distributed in
equal numbers in the table, given that the
value of xz are respectively 16.9, 18.3 and
19.7 for 9, 10 and 11 degree of freedom at

5% level of significance.
Use Muller’s method to find a root of the

equation x* —x* —x+1=0.

Given the set of tablulated points(l, -3,39),
(4, 30), (6, 40), obtain the value of y when x=2
using Newton’s divided-difference formula.

Use Picard’s method to approximate the

value of ¥ when x=0.1, given that y=1

dy 2
when x=0 and Ex_=3x+y :

The curve y=ce”" is fitted to the data :

X 1 2 3 4 5
S |15 [46 [13.9] 40 | 9

-

Find the best value of ¢ and b.

(b)

12. (a)
(b)
13. (a)
(b)
NP-3605

(5)

Use Stirlj
Stirling’s formula to £

nd uq, f
following data : SR

Uy =14, uys =18, Hyo =22,
Hys =24, g =12, wy=32.

2
C Sinx
alculate |l e"dx correct to four

decimal places using Simpson’s -:'rule,

Obtain /17 to five places of decimal by .
Newton-Raphson method.

Find the first derivative of f(x)at x=04

from the following table :

x 0.1 0.2 0.3 04
f(x) | 1.10517 | 1.22140 | 1.34986 | 1.49182

A sample of 12 fathers and their eldest sons

gave the following data about their height in

inches :

Scanned with CamScanner

Scanned with CamScanner

OOP with C++ by E Balagurusamy > Solution

Chapter 1

Review Questions

1.1: What do you think are the major issues facing the software industry today?

Ans: Many software products are either not finished or not used or not delivered for some major
errors. Today some of the quality issues that must be considered for software industry are:

. Correctness.

. Maintainability.

. Reusability.

. Openness and interoperability.

. Portability.

. Security.

. Integrity.

. User friendliness.

00 ~1 O\ W = L) D e

1.2: Briefly discuss the software evolution during the period 1950— 1990,

Ans: In 1950, the first three modern programming languages whose descendants are still in
widespread today.

1. FORTRAN (1955), the “FORmula TRANslator™

2. LISP (1958) the “LISt Procssor™.

3. COBOL, the COmmon Business Oriented Language.

Some important language that were developed in 1950 to 1960 are:
. Regional Assembly Language—1951

. Autocode-19952

. IPL-1954

. FLOW-MATIC-1955

. COMTRAN-1957

. COBOL-1959

. APL-1962

~N N e L) N e

1.3: What is procedure-oriented programming? What are its main characteristics?

Ans: Conventional programming, using high level language such as COBOL, FORTAN and C is
commonly known as procedure oriented programming.
Characteristics :

Scanned with CamScanner

a) Emphasis is on doing things (algorithms)

b) Large programs are divided into small programs known as function.
c¢) Most of the function share global data.

d) Data move openly around the system from function to function.

e) Function transform data from one form to another.

1.4: Discuss an approach to the development of procedure-oriented programs.

Ans: In the procedure-oriented approach, the problem is viewed as a sequence of things to be
done such as

1. reading

2. Calculating

3. Printing.

A number of functions are written to accomplish these tasks.

1.5: Describe how data are shared by functions in a procedure-oriented program.

Ans: In a multi-function program, many important data items are placed as global so that they
may be accessed by all the functions. Each function may have its own local data.

Global Global
data data
v E
Function-1 Function-2
Global Global
data data

Fig: Data sharing in procedure oriented program

1.6: What is object-oriented programming? How is it different from the procedure-oriented
programming?

Scanned with CamScanner

Ans: Object oriented programming (OOP)is an approach that provides a way of modularizing
programs by creating partitioned memory area for both data and functions that can be used as
templates for creation copies of such modules on demand.

Different between OOP(Object oriented programming) & POP(Procedure oriented programming):
1. OOP has data hading feature for which the data of a class cannot be accessed by the member
function of other class but POP has no such feature.

2. In OOP we can design our own data-type which is same as built in data type. But in POP we
can not do this.

1.7: How are data and functions organized in an object-oriented program?

Ans: Data and functions are belongs to a class. Data is called data member and functions are
called member functions. There is a visibility-mode such as public and private. Generally data is
private and functions are public.

Object A Object B
Function | «|—communication | rgome
Object C

Nizemd

Fig : Organization of data and function in OPP

1.8: What are the unique advantages of an object-oriented programming paradigm?

Ans: The unique advantage of object-oriented program paradigm is to have a working definition
of OOP before we proceed further.

Scanned with CamScanner

1.9: Distinguish between the following terms:
(a) Objects and classes

(b) Data abstraction and data encapsulation

(c) Inheritance and polymorphism

(d) Dynamic binding and message passing

Ans: (a) Objects are the basic run-time entities which contain data and code to manipulate data
where the entire set of data and code of an object can be made as a user-defined data type with the
help of a class. In short, objects are numbers of classes.

(b) Describing the functionality of a class independent of its implementation is called data
abstraction. Where data encapsulation means the wrapping up of data and functions into a single

unit.

(c) The mechanism of deriving a new class from an old one is called inheritance, where
polymorphism means one thing with several distinct terms.

(d) Binding refers to the linking of a procedure call to be executed in response to the call. When
binding occurs at run-time, then it is known as dynamic-binding.

Massage passing involves specifying the name of the object, the name of the function and the
information to be sent

1.10: What kinds of things can become objects in 00P?

Ans: Objects are the basic run-time entities in an object-oriented system. They may represent a
person, a place, a bank account, a table of data or any item that the program has to handle.

1.11: Describe inheritance as applied to OOP,

Ans: Inheritance is one of the most powerful feature of object-oriented programming. Inheritance
is the process of creating new class from existing class. The new class is called derived class and
existing class is called base class.

1.12:What do you mean by dynamic binding? How is it useful in OOP?

Ans: Binding refers to the linking of a procedure call to be executed in response to the call. When
binding occurs at run time it is known as dynamic binding. Dynamic binding is useful in OOP
such as a function call associated with a polymorphic reference depends on the dynamic type of
that reference.

Scanned with CamScanner

1.13:Now does object-oriented approach differ from object-based approach?

Ans: Object-based programming do not support inheritance and dynamic binding but object-
oriented programming do so.

1.14:List a few areas of application of 001" technology.

Ans: Areas of application of OOP technology are :
1. Real-time system.

2. Simulation and modeling.

3. Object oriented database.

4. Hypertext, hypermedia .

5. Decision support and office automation system.

1.15:State whether the following statements are TRUE or FALSE.

(a) In procedure-oriented programming, all data are shared by all functions.

(b) The main emphasis of procedure-oriented programming is on algorithms rather than on data.
(c) One of the striking features of object-oriented programming is the division of programs into
objects that represent real-world entities.

(d) Wrapping up of data of different types into a single unit is known as encapsulation.

(e) One problem with O0P is that once a class is created it can never be changed.

(f) Inheritance means the ability to reuse the data values of one object by

(g) Polymorphism is extensively used in implementing inheritance.

(h) Object oriented programs are executed much faster than conventional programs.

(i) Object-oriented systems can scale up better from small to large.

(j) Object-oriented approach cannot be used to create databases.

Ans:

a> FALSE
b> TRUE
¢> TRUE
d> FALSE
e> FALSE
f> TRUE
¢> TRUE
h> FALSE
i> TRUE
j> FALSE

Scanned with CamScanner

Chapter 2

Review Questions

2.1: State whether the following statements are TRUE or FALSE.

(a) Since C is a subset of C++, all C peograms will run under C++ compilers.

(b) In C++, a function contained within a class is called a member function.

(c) Looking at one or two lines of code, we can easily recognize whether a program is written in
C or C++.

(d) In C++, it is very easy to add new features to the existing structure of an object.

(e) The concept of using one operator for different purposes is known as aerator overloading. 10
The output function printfl) cannot be used in C++ programs.

Ans:

a> FALSE

b> TRUE

c¢> FALSE

#*% most lines of codes are the same in C & C++
d> TRUE

e> TRUE

f> FALSE

2.2: Why do we need the preprocessor directive #include<iostream>?

Ans: “#include<iostream>’ directive causes the preprocessor to add-the contents of iostream file
to the program.
2.3: How does a main() function in C++ differ from main{ } in C?

Ans: In C main () by default returns the void type but in C++ it returns integer by default.
2.4: What do you think is the main advantage of the comment // in C++ as compared to the old C
type comment?

Ans: °//° 1s more easy and time-saving than */* */°
2.5:Describe the major parts of a C++ program.

Ans: Major parts of a C++ program :
1. Include files

2. Class declaration

3. Member function definitions

4. Main function program

Scanned with CamScanner

Debugging Exercises

2.1: Identify the error in the following program.

#include<iostream.h>
void main()
{
inti=0;
i=i+1;
cout «1 «
[*comment *//i=i+ 1;
cout << i;

}

"o,

Ans: Syntax error—/* comment*//i=i+1;

2.2: Identify the error in the following program.

#include<iostream.h>
void main()
{
short i=2500, j=3000;
cour>> "I4j=">> ~(i+j);

}

Ans: cout >> “i+)=">> lllegal structure operation.—-(i + j);

2.3: What will happen when you run the following program?

#include<iostream.h>

void main()

{
int i=10, j=5;
int modResult=0;
int divResult=0;
modResult = 1%];
cout<<modResult<<" ";
divResult = i/modResult;

cout<<divResult;

Ans: floating point Error or divide by zero—divResult = i/modResult;

Scanned with CamScanner

Note: If this kind of Error exist in a program, the program will successfully compile but it will
show Run Error.

2.4: Find errors, if any, in the following C++ statements,

(a) cout<<"x="x; (b)m=35; /n=10; //=m+ n: (¢c) cin >>x; >>y;
(d) cout <<\h “Name:” <<name,

(e) cout <<“Enter value:”; cin >> x:

(f) /*Addition*/ z=x +y;

Ans:
Error Correction
A Statement missing cout<<"x="<<x;
B No error
& Expression-syntax-error cin>>x>>y;
5 Illigal character *\". cout<‘<“\n
Statement missing Name™<<name;
E No error
F No error

Programming Exercises
2.1: Write a program to display the following output using a single cout statement

Maths = 90
Physics =77
Chemistry = 69

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 int main()

int mark[]={90,77,69};

for(int 1=0;1<3:i++)
9 {
10cout<<setw(10)<<sub[i]<<setw(3)<<"="<<setw(4)<<mark][i]<<endl;
11)
12 return O;
13}

4 {

5

6 char *sub[]={"Maths","Physics","Chemestry"};
7

8

Scanned with CamScanner

output

Maths = 90
Physics =77
Chemistry = 69

2.2: Write a program to read two numbers from the keyboard and display the larger value

on the screen.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>

i
{

3

4 int main()
5

6 float a,b;
7

8

9

cout<<" Enter two values :"<<endl;

cin>>a>>b;
if(a>b)

10 cout<<" larger value = "<<a<<end]l;

11 else

12 cout<<" larger value = "<<b<<endl;

13 return 0;

output

Enter two values ; 10 20
larger value = 20

2.3: Write a program to input an integer from the keyboard and display on the screen

“WELL DONE” that many times.

Solution:

Solution:
#include<iostream.h>
#include<iomanip.h>
int main()
{ .
int n;
char *str;
str="WELL DONE";

00 ~1 OV W = L) b9

Scanned with CamScanner

9

10
11
12
13
14
15

16)

cout<<" Enter an integer value ";
cin>>n;
for(int i=0;i<n;i++)
{
cout<<str<<endl;

}

return 0;

output

Enter an integer value 5
WELL DONE
WELL DONE
WELL DONE
WELL DONE
WELL DONE

2.4: Write a program to read the values a, b and ¢ and display x, where
x=a/b-c

Test the program for the following values:

(a)a=250,b=85,c=25

(b)a=300,b=70,c=70

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 int main()

4 {

float a,b,c,x;
cout<<" Enter the value of a.b, &c :"<<endl;
cin>>a>>b>>c;
if((b-¢)!=0)
{

x=a/(b-c);

cout<<" x=a/(b-c) = "<<x<<endl;
}
else
{

cout<<" x= infinity "<<endl;

}

return 0;

Scanned with CamScanner

During First Run:
output

Enter the value of a.b, &c : 250 85 25
x=a/(b-c) = 4.166667

During Second Run:
output

Enter the value of a,b, &c : 300 70 70
x= infinity

2.5: Write a C++ program that will ask for a temperature in Fahrenheit and display it in
Celsius

Solution:

#include<iostream.h>
#include<iomanip.h>

int main()
{
float f,theta:
cout<<" Enter the temperature in Feranhite scale : ";
cin>>f;
theta=((f-32)/9)*5;
10 cout<<" Temperature in Celsius = "<<theta<<endl;
11T return 0;

OO0 NI Oy s DB e

output

Enter the temperature in Feranhite scale : 105
Temperature in Celsius = 40.555557

2.6: Redo Exercise 2.5 using a class called temp and member functions.

Solution:

Scanned with CamScanner

#include<iostream.h>
#include<iomanip.h>

class temp
{
float f.theta;
public:
float conversion(float f);

)

O 00~ O e L) N e

10

1 1float temp::conversion(float f)
12{

13 theta=((f-32)/9)*5;

14 return theta;

15}

16int main()

17{

18 tempt;

19 floatf;

20 cout<<" Enter temperature in Farenheite scale :"<<endl;
21 cin>>f;

22 cout<<" Temperature in Celsius scale = "<<t.conversion(f)<<endl;
23 return O;
24}

output

Enter the temperature in Feranhite scale : 112
Temperature in Celsius = 44.444443

Chapter 3

Review Questions

3.1: Enumerate the rules of naming variables in C++. How do they differ from ANSI C rules?

Ans: Rules of naming variables in C++ are given below :

a. Any character from “a’ to “z’ or “A’ to *Z’ can be used.

b. Digit can be used but not at the beginning.

c. Underscore can be used but space is not permitted.

d. A keyword cannot be used as variable name.

In C++, a variable can be declared any where in the program but before the using of the variable.
In C all variables must be declared at the beginning of the program.

3.2: An unsigned int can be twice as large as the signed int. Explain how?

Scanned with CamScanner

Ans:
In case of unsigned int the range of the input value is : 0 to 2™ — 1. [where m is no. of bit]
In case of signed int the range of the input value is ; -2™' to + (2™ - 1)

maximum value for unsigned int =—1
value for signed int T (=l-]) + 2=
2

2=-]

T22=1-]
2

=)

2=—]

2

=2

So, maximum value for unsigned int can be twice as large as the signed int.
* Here the absolute value of lower value -2™' for signed int must be considered for finding
average value of signed int.

3.3: Why does C++ have type modifiers?

Ans: To serve the needs of various situation.

3.4: What are the applications of void data type in C++?

Ans: Two normal uses of void are
(1) to specify the return type of a function when it is not returning any value.
(2) To indicate any empty argument list to a function.

Example : void function (void)

Another interesting use of void is in the declaration of generic pointers.
Example :

void *gp: //gp is generic pointer.

A pointer value of any basic data type can be assigned to a generic pointer
int * ip;

gp = ip; // valid.

3.5: Can we assign a void pointer to an int type pointer? If not, why? Now can we achieve
this?

Scanned with CamScanner

Ans: We cannot assign a void pointer to an int type pointer directly. Because to assign a pointer
to another pointer data type must be matched. We can achieve this using casting.

Example :

void * gp;

int *ip;

ip=(int *) gp

/br<>

3.6: Describe, with examples, the uses of enumeration data types.

Ans: An enumerated data type is a user-defined type. It provides a way for attaching names to
numbers in ANSIC

Example :
enum kuet (EEE, CSE, ECE, CE, ME, IEM);

The enum keyword automatically enumerates
EEE to 0

CSEto 1

ECE to 2

CEto3

MEto 4

IEMto 5

In C++ each enumerated data type retains its own separate type.

3.7: Describe the differences in the implementation of enum data type in ANSI C and C++.

Ans: Consider the following example :
enum kuet (EEE, CSE, ECE, CE, ME, IEM);

Here, kuet is tag name.
In C++ tag name become new type name. We can declare a new variables Example:

kuet student;
ANSI C defines the types of enum to be int.

In C int value can be automatically converted to on enum value. But in C++ this is not permitted.

Example:
student cgp = 3.01 // Error in C++
// OK in C.

student cgp = (student) 3.01 //OK in C++

Scanned with CamScanner

3.8: Why is an army called a derived data type?

Ans: Derived data types are the data types which are derived from the fundamental data types.
Arrays refer to a list of finite number of same data types. The data can be accessed by an index
number from o to n. Hence an array is derived from the basic date type, so array is called derived

data type.

3.9: The size of a char array that is declared to store a string should be one larger than the
number of characters in the string, Why?

Ans: An additional null character must assign at the end of the string that’s why the size of char
array that is declared to store a string should be one larger than the number of characters in the
string.

3.10: The const was taken from C++ and incorporated in ANSI C, although quite differently.
Explain.

Ans: In both C and C++, any value declared as const cannot be modified by the program in any
way. However there are some differences in implementation. In C++ we can use const in a
constant expression, such as const int size = 10; char name [size];

This would be illegal in C. If we use const modifier alone, it defaults to int. For example, const
size = 10; means const int size = 10;

C++ requires const to be initialized. ANSI C does not require an initialization if none is given, it
initializes the const to 0. In C++ a const is local, it can be made as global defining it as external.
In C const is global in nature , it can be made as local declaring it as static.

3.11: How does a constant defined by cowl differ from the constant defined by the
preprocessor statement %define?

Ans: Consider a example : # define PI 3.14159

The preprocessor directive # define appearing at the beginning of your program specifies that the
identifier PI will be replace by the text 3.14159 throughout the program.

The keyword const (for constant) precedes the data type of a variable specifies that the value of a
variable will not be changed throughout the program.

In short, const allows us to create typed constants instead of having to use # define to create
constants that have no type information.

Scanned with CamScanner

3.12: In C++. a variable can be declared anywhere in the scope. What is the significance of
this feature?

Ans: It is very easy to understand the reason of which the variable is declared.

3.13: What do you mean by dynamic initialization of a variable? Give an example.

Ans: When initialization is done at the time of declaration then it is know as dynamic
initialization of variable

Example :
float area = 3.14159%*rad * rad;

3.14: What is a reference variable? What is its major use?

Ans: A reference variable provides an alias (alternative name) for a previously defined variable.
A major application of reference variables is in passing arguments to functions.

3.15: List at least four new operators added by C++ which aid OOP.

Ans:

New opperators added by C++ are :

1. Scope resolution operator ::

2. Memory release operator delete delete
3. Memory allocation operator new

4. Field width operator setw

5. Line feed operator endl

3.16: What is the application of the scope resolution operator :: in C++?

Ans: A major application of the scope resolution operator is in the classes to identify the class to
which a member function belongs.

3.17: What are the advantages of using new operator as compared to the junction ntallocOr

Ans: Advantages of new operator over malloc ():

1. It automatically computes the size of the data object. We need not use the operator size of.
2. It automatically returns the correct pointer type, so that there is no need to use a type cast.
3. It is possible to initialize the object while creating the memory space.

4. Like any other operator, new and delete can be overloaded.

Scanned with CamScanner

3.18: Illustrate with an example, how the seize manipulator works.

Ans:

setw manipulator specifies the number of columns to print. The number of columns is equal the

value of argument of setw () function.

For example :

setw (10) specifies 10 columns and print the massage at right justified.

cout << set (10) << “1234™; will print

If argument is negative massage will be printed at left justified.
cout <<setw(-10)<< “1234"; will print

1 2 3 4

3.19: How do the following statements differ?
(a) char *const p;
(b) char canal *p;

Ans:
(a) Char * const P; means constant pointer.
(b) Char const * P; means pointer to a constant.

In case of (a) we con not modify the address of p.

In case of (b) we can not modify the contents of what it points to.

Debugging Exercises
3.1: What will happen when you execute the following code?

1#include <iostream.h>
2void main()

3{

4 inti=0;

5 1=400*400/400;

6 cout<<i;

7}

Scanned with CamScanner

Ans: i = 400*400/400: Here, 400*400 = 160000 which exceeds the maximum value of int
variable. So wrong output will be shown when this program will be run.

Correction :

1Int I=0;

should be changed as
llong inti=0;

to see the correct output.

3.2: Identify the error in the following program.

linclude<iostream.h>

2void main()

3{

4 int num[]={1,2,3,4,5.6};

5 num[l]==[1]num ? cout<<"Success" : cout<<"Error";
6}

Ans: num [1] = [1] num?. You should write index number after array name but here index
number is mention before array name in [1] num

So expression syntax error will be shown.

Correction : num[1] = num[1]? is the correct format

3.3: Identify the errors in the following program.

1 #include <iostream.h>
2 void main()

4 int i=5;
5 while(1)
6 |

7 switch(i)
8

9 default:
10 case 4:

Scanned with CamScanner

11 case 5:

12 break;
13 case 1:
14 continue;
15 case 2:
16 case 3:
17 break;
18 }

191-;

20}

21}

Ans:

Icase 1 :
2continue;

The above code will cause the following situation:

Program will be continuing while value of i is 1 and value of 1 is updating. So infinite loop will be
created.

Correction: At last line i- should be changed as i—;

3.4: Identify the errors in the following program.

#include <iostream.h>
#define pi 3.14
int squareArea(int &);
int circleArea(int &);
void main()
{
int a-10;
cout << squareArea(a) << " ";
cout « circleArea(a) « ";
10 cout «a « endl;
11 |
12 int squareArea(int &a)
13 {
14 return a *==a;
15)
16 int circleArea(int &r)
17 |
I8 returnr=pi*r*r;

19 })

OO0 IO e) D e

Scanned with CamScanner

Ans: Assignment operator should be used in the following line:

lreturn a *==a;

That means the above line should be changed as follows:

Ireturn a *=a;

3.5: Missing

3.6: Find errors, if any, in the following C++ statements.
(a) long float x;

(b) char *cp = vp; / vp is a void pointer

(¢) int code = three; // three is an enumerator
(d) int sp = new; // allocate memory with new
(e) enum (green, yellow, red);

(f) int const sp = total;

(g) const int array_size;

(h) for (i=1; int i<10; i++) cout << i << "/n"; (i) int & number = 100; (j) float *p = new int 1101;
(k) int public = 1000; (1) char name[33] = "USA";

Ans:

No.

(a)
(b)
(c)
(d)
(e)

()
(2)
(h)
(1)
)
(k)

()

Error

too many types

type must be matched
No error

syntax error

tag name missing

address have to assign instead of
content

C++ requires a const to be initialized
Undefined symbol i

invalid variable name
wrong data type

keyword can not be used as a variable
name

array size of char must be larger than
the number of characters in the string

Correction
float x; or double x;

char *cp = (char®) vp;

int*p = new int [10];

enum colour (green, yellow, red)
int const * p = &total;

const int array-size = 5;

for (intI=1:1<10: i++) cout <<
1<<%/n”;

int number = 100;
float *p = new float [10];

int publicl = 1000;

char name [4] = “USA™;

Scanned with CamScanner

Programming Exercises

3.1: Write a function using reference variables as arguments to swap the values of a pair of

integers.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>

3

4 void swap_func(int &a,int &b)

54

6

7 cout<<" Before swapping "<<endl

8 <<" a = "<<a<<endl<<" b = "<<b<<endl<<endl;
9 int temp;

10 temp=a;

11 a=b;

12 b=temp;

13 cout<<" After swapping "<<endl

14 <<" a = "<<a<<endl<<" b = "<<b<<endl<<endl;

15

16}

17

18int main()
19{

20 int x.y;

21 cout<<" Enter two integer value : "<<endl;
22 cin>>x>>y;

23 swap_func (x,y);

24 return 0;

25}

output

Enter two integer value : 56 61
Before swapping

a=>356
b =61
After swapping
a=>56
b =61

Scanned with CamScanner

3.2: Write a function that creates a vector of user given size M using new operator.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 int main()

4 {

5 intm;

6 int *v;

7 cout<<" Enter vector size : "<<endl;
8 cin>>m;

9 v=new int [m];
10 cout<<" to check your performance insert "<<m<<" integer value"<<endl;
11 for(int i=0;i<m:i++)

12
13 cin>>v[i];
14)

15 cout<<" Given integer value are :"<<endl;
16 for(i=0;1<m:i++)

17 {

18

19 if(i==m-1)

20 cout<<vl[i];

21 else

22 cout<<v[i]<<",";
23

24)

25 cout<<endl;

26 return 0;

27}

output

Enter vector size : 5

to check your performance insert 5 integer value
75961

Given integer value are :

7,5,9,6,1

3.3: Write a program to print the following outputs using for loops

1
22

333
4444

Scanned with CamScanner

55555

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 int main()

4 {

5 int n;

6 cout<<" Enter your desired number :"<<endl;
7 ci>>n;

8 cout<<endl<<endl;

9 for(int i=1;i<=n;i++)
10 {

11 for(int j=1:j<=i;j++)
12 {

13 cout<<i;

14 }

15 cout<<endl;

16 }

17 return O;

18}

output

Enter your desired number : 6
1

22

333

S0

55555

666666

3.4: Write a program to evaluate the following investment equation
V =P(1+1)"

and print the tables which would give the value of V for various

of the following values of P, r and n:

P: 1000, 2000, 3000,...............,10,000
r:010,0.11,0.12,.....................0.20
L2 3 10

(Hint: P is the principal amount and V is the value of money at the end of n years. This equation
can be recursively written as

V=P +r)

P=Y

In other words, the value of money at the end of the first year becomes the principal amount for
the next year and so on)

Scanned with CamScanner

Solution:

#include<iostream.h>
#include<iomanip.h>
#include<math.h>
#define size 8

int main()

float v.pf;
int n=size;

O 00~ O e L) D e

10 float p[size]={ 1000,2000,3000,4000,5000,6000,7000,8000}://9000,1000 } ;

11 float rfsize]={0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18 }.//,0.19,0.20};

13 cout<<setw(5)<<"n=1";
14 for(int 1 =2;i<=size;i++)
15 cout<<setw(9)<<"n="<<i;
16 cout<<"\n";

17

18 for(i=0;1<size;i++)

19 {

20 cout<<setw(-6)<<"p=";

2] for(int j=0;j<size;j++)

22 {

23 if(j==0)

24 pf=plil;

25

26 v=pf*(1+1i]);

27

28 cout.precision(2);

29 cout.setf(ios::fixed, ios::floatfield);

30 cout<<v<<setw(10);

31 pf=v;

32 }

33 cout<<"\n";

34

35)

36 return 0;

37)

output

n=1 n=2 n=3 n=4 n=5 n=6 n=7

p=1110 1232.1 1367.63 1518.07 1685.06 1870.41 2076.16
p=2240 2508.8 2809.86 3147.04 352468 3947.65 4421.36

p=3390 3830.7 4328.69 489142 552731 6245.86 7057.82

p=4560 51984 5926.18 6755.84 7701.66 8779.89 10009.08
p=5750 66125 760437 8745.03 10056.79 11565.3 13300.1
p=6960 8073.6 9365.38 10863.84 12602.05 14618.38 16957.32

Scanned with CamScanner

p=8190 95823 11211.29 13117.21 15347.14 17956.15 21008.7
p=9440 11139.2 1314426 15510.22 18302.06 21596.43 25483.79

3.5: An election is contested by five candidates. The candidates are numbered 1 to 5 and the
voting is done by marking the candidate number on the ballot paper. Write a program to
read the ballots and count the vote cast for each candidate using an array variable count. In
case, a number read is outside the range 1 to 5, the ballot should be considered as a “spoilt
ballot” and the program should also count the numbers of “spoilt ballots”.

Solution:
1 #include<iostream.h>

2 #include<iomanip.h>
3 int main()

4 {

5 int count[5];

6 inttest;

7 for(int i=0;1<5:1++)
8 |

9 count[i]=0;
10}

1T int spoilt_ballot=0;

12 cout<<" You can vot candidate 1 to 5 "<<endl

13 <<"press 1 or2or3or4orS5 to vote "<<endl

14 <<" candidate 1 or 2 or 3 or 4 or 5 respectively "<<endl

15 <<" press any integer value outside the range 1 to 5 for NO VOTE "<<endl<<" press any
I6negative value to terminate and see result :"<<endl;

17

18 while(1)

19 {

20 cin>>test;

21

22 for(int i=1:1<=5:1++)
23 {

24 if(test==1)

25 {

26 count[i-1]++;
27 }

28]

29 if(test<0)

30 break;

31 else if(test>5)

32 spoilt_ballot++;
33 }

34 for(int k=1:k<=5:k++)

35 cout<<" candidate "<<k<<setw(12):
36 cout<<endl;

37 cout<<setw(7);

Scanned with CamScanner

38 for(k=0:k<5:k++)

39 cout<<count[k]<<setw(13);

40 cout<<endl;

41 cout<<" spoilt_ballot "<<spoilt_ballot<<endl;
42 return 0;

}
output

You can vot candidate 1 to 5

press |l or 2 or 3 or4 or 5 to vote

candidate I or 2 or 3 or 4 or 5 respectively

press any integer value outside the range 1 to S for NO VOTE
press any negative value to terminate and see result :

(= RN R S B N L L e

candidate 1 candidate 2 candidate 3 candidate 4 candidate S
41213
spoilt_ballot 1

3.6: A cricket has the following table of batting figure for a series of test matches:

Player’s name Run Innings Time not
outSachin 8430 230 18Saurav 4200 130

Write a program to read the figures set out in the above forms, to calculate the batting arranges
and to print out the complete table including the averages.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>

3
4 char *serial[3]={" FIRST "," SECOND " ," THIRD "};//global declaration

Scanned with CamScanner

int main()

int n;

char name[100][40];

10 int *run;

I1 int *innings;

12 int *time_not_out;

13 cout<<" How many players' record would you insert ? :";
14 cin>>n;

15 //name=new char[n];

16 run=new int[n];

17 innings=new int[n];

18 time_not_out=new int[n];

19

20 for(int i=0;i<n;i++)

21

22 if(i>2)

23 {

24 cout<<"\n Input details of "<<i+1<<"th"<<" player's"<<endl;
25)

26 else

27 {

28 cout<<" Input details of "<<serial[i]<<"player's : "<<endl;
29 }

30

31 cout<<" Enter name : ";

32

33 cin>>name[i];

34 cout<<" Enter run : ";

35 cin>>run[i];

36 cout<<" Enter innings : ";

37 cin>>innings|i];

38 cout<<" Enter times not out : ";

39 cin>>time_not_out[i];

40)

41

42 float *average;

43 average=new float[n];

44 for(i=0;i<n:;i++)

45 {

46 float avrg;

47 average[i]=float(run[i])/innings[i];

48

49 }

50 cout<<endl<<endl;

51 cout<<setw(12)<<"player's name "<<setw(l1)<<"run"<<setw(12)<<"innings"<<setw(16)<<"Average"<<setw
52out"<<endl;

53 for(i=0;i<n;i++)

54 {

55 cout<<setw(14)<<name[i]<<setw(l l)<<run[i]<<setw(9)<<innings[i]<<setw(18)<<average[i]<<setw(15)<<

Scanned with CamScanner

56 }

57 cout<<endl;
58

59 return 0;

}
output

How many players record would you insert ? :2
Input details of FIRST player’s :

Enter name : Sakib-Al-Hassan

Enter run : 1570

Enter innings : 83

Enter times not out : 10

Input details of SECOND player’s :

Enter name : Tamim

Enter run : 2000

Enter innings : 84

Enter times not out : 5

player’s name run innings Average times not out
Sakib-Al-Hassan 1570 83 18.915663 10
Tamim 2000 84 23.809525 5

3.7: Write a program to evaluate the following function to 0.0001% accuracy
(a)sinx =x—x¥/3! + x3/5! —x"T +............
(b) SUM = 14+(1/2)% + (173 +(1/4)* +

(c) Cosx = 1 —x%2! + x¥/4!1 —x5/6! +

Solution (a):

#include<iostream.h>
#include<math.h>
#include<iomanip.h>
#define accuracy 0.0001
#define pi 3.1416

long int fac(int a)
{
if(a<=1)

0 return 1;
else
12 return a*fac(a-1);
13)
14int main()

—A\D 00 ~] N W s) P e

[—y
—

Scanned with CamScanner

15{

16 floaty.yl x fx;

17 intn=1;

I8 intm;

19 //const float pi=3.1416;
20 cout<<" Enter the value of angle in terms of degree: ";
21 Cin>>X;

22 float d;

23 =X,

24 int sign;

25 sign=1;

26if(x<0)

27{

28 x=x*(-1);

29 sign=-1;

30}

3lagain:

32 if(x>90 && x<=180)
33 {

34

35 x=180-x;

36

37)

38 else if(x>180 && x<=270)
39 |

40 x=x-180;

41 sign=-1;

42)

43 else if(x>270 && x<=360)
4 |

45 x=360-x:

46 sign=-1;

47

48

49 else if(x>360)

50 |

51 int m=int(x);

52 float fractional=x-m;
53 x=mY% 360+fractional;
54 if(x>90)

55 goto again;

56 else

57 sign=1;

58

59 }

60 x=(pi/180)*x;

61 m=n+l;

62 fx=0;

63 for(;)

64 {

65 long int h=fac(n);

Scanned with CamScanner

66 y=pow(x,n);

67 int factor=pow(-1.m);
68 y I=y*factor;

69 fx+=yl/h;

70 n=n+2;

71 m++;

72 if(y/h<=accuracy)
73 break;

74)

75

76 cout<<"sin("<<d<<")="<<fx*sign<<endl;
77 return O;
78}

output

Enter the value of angle in terms of degree: 120
sin(120)= 0.866027

Solution (b):

#include<iostream.h>
#include<math.h>
#define accuracy 0.0001
int main()
{
int n;
float sum,nl,m;
n=1;5um=0;
for(int i=1;:1++)
10 {
11 nl=float(1)/n;
12 m=pow(nl,i);
13 sum+=m;
14 if(m<=accuracy)
15 break;

O 00~ O e) D e

17 n++;

18 }

19 cout<<sum<<"\n";
20 return O;

21)

22 Sample Output(b)

23

24 Solution: (c)

25 #include<iostream.h>
26#include<math.h>
274#define accuracy 0.0001

Scanned with CamScanner

28
29 long int fac(int n)

30§

31 if(n<=1)

32 return 1;

33 else

34 return n*fac(n-1);
35)

36

37 int main()
38{

39

40 float y,yl,x fx;
41 int n=1;

42 intm;

43 const float pi=3.1416;
44 cout<<" Enter the value of angle in terms of degree:
45 cin>>x;

46 if(x<0)

47 x=x*(-1);

48 x=(p/180)*x;

49

50 fx=1;

51

52 m=2;

53 float y2;

54 long int h;

55 for(:;)

56 {

57 h=fac(m);

58 int factor=pow(-1,n);
59 yl=pow(x,m);

60 y2=(y1/h)*factor;
61 fx+=y2;

62 if(y1/h<=accuracy)
63 break;

64 m=m+2;

65 n++;

66)

67 cout<<fx<<"\n";
68)

output

Enter the value of angle in terms of degree: 60
0.866025

Scanned with CamScanner

3.8: Write a program to print a table of values of the function

Y=¢c*

For x varying from 0 to 10 in steps of (.1. The table should appear as follows

TABLE FOR Y =EXP[-X];

0.900

“\n\n";

X 01 02 03 04 05 06 07 08
1.0
9.0
Solution:
1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<math.h>
4 int main()
54
6 float x.y;
7 cout<<" TABLE FOR Y=EXP(-X)
8 cout<<"x";
9 for(float k=0:k<.7:k=k+0.1)
10 cout<<setw(10)<<k;
11 cout<<"\n";
12 for(k=0:k<10*.7:k=k+0.1)
13 cout<<"-";
14 cout<<™\n";
15 for(float j=0;j<10:j++)
16 {
17 cout<<j<<setw(4);
18 for(float i=0;1<.7;1=1+0.1)
19 {
20 X=1+4j;
21 y=exp(-x);
22 cout.precision(6);
23 cout.setf(ios::fixed,io0s::floatfield);
24 cout<<setw(10)<<y;
25 }

Scanned with CamScanner

26 cout<<"\n";

27 }

28 return 0

29}

Note: Here we work with 0.4 for a good looking output.

output

TABLE FOR Y=EXP(-X)

X 0 0.1 0.2 0.3 04
0 1 0.904837 0.818731 0.740818 0.67032
1 0.367879 0.332871 0.301194 0.272532 0.246597

2 0.135335 0.122456 0.110803 0.100259 0.090718

0.049787 0.045049 0.040762 0.036883 (0.033373

L

4 0018316 0.016573 0.014996 0.013569 0.012277
5 0.006738 0.006097 0.005517 0.004992 0.004517
6 0.002479 0.002243 0.002029 0.001836 0.001662
7 0.000912 0.000825 0.000747 0.000676 0.000611
8 0.000335 0.000304 0.000275 0.000249 0.000225

9 0.000123 0.000112 0.000101 0.000091 0.000083

3.9: Write a program to calculate the variance and standard deviation of
N numbers

Variance =1/N Y (x;-x)?

Standard deviation=V1/N ¥(x;-x)?

Where x = I/N ¥x;

Solution:

1 #include<iostream.h>

Scanned with CamScanner

2 #include<math.h>
3 int main()
4 {

5 float *x;
6 cout<<" How many number 7 :";
q int n;

8 cin>>n;

9 x=new float[n];

10 float sum;

11 sum=0;

12 for(int 1=0:1<n;i++)

13 {

14 cin>>x[i];

15 sum+=x[i];

16 }

17 float mean;

18 mean=sum/n;

19 float v,vl;

20 vi1=0;

21 for(i=0;i<n:i++)

22 |

23 v=x[i]-mean;
24 vi+=pow(v,2);
25 |}

26 float variance,std_deviation;

27 wvariance=vl/n;

28 std_deviation=sqri(variance);

29 cout<<"\n\n variance = "<<variance<<"\n standard deviation = "<<std_deviation<<"\n";
30

31 return O;

32)

output

How many number ? :5
10

2

4

15
2

variance = 26.24
standard deviation = 5.122499

3.10: An electricity board charges the following rates to domestic users to

discourage large consumption of energy:

For the first 100 units — 60P per unit

Scanned with CamScanner

For the first 200 units — 80P per unit
For the first 300 units — 90P per unit

All users are charged a minimum of Rs. 50.00. If the total amount is more than Rs. 300.00 then an
additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and print out the
charges with names.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>

3 int main()

4 {

5 intunit;

6 float charge,additional;

7 char name[40];

8 while(l)

9

10 {

11 input:

12 cout<<" Enter consumer name & unit consumed :";
13 cin>>name>>unit;

14 if(unit<=100)

15 {

16 charge=50+(60*unit)/100;

17 }

18 else if(unit<=300 && unit>100)

19 {

20 charge=50+(80*unit)/100;

21 }

22 else if(unit>300)

23 {

24 charge=50+(90*unit)/float(100);

25 additional=(charge*15)/100;

26 charge=charge+additional;

27 }

28 cout<<setw(15)<<"Name"<<setw(20)<<"Charge"<<endl;
29 cout<<setw(15)<<name<<setw(20)<<charge<<endl;
30 cout<<" Press o for exit / press 1 to input again :";
31 int test;

32 cin>>test;

33 if(test==1)

34 goto input;

35 else if(test==0)

36 break;

37)

Scanned with CamScanner

38 return 0;
39}

output

Enter consumer name & unit consumed :sattar 200
Name Charge

sattar 210

Press o for exit / press 1 to input again :1

Enter consumer name & unit consumed :santo 300
Nmae Charge

santo 290

Press o for exit / press 1 to input again : 0

Chapter 4

Review Questions

4_1: State whether the following statements are TRUE or FALSE.

(a) A function argument is a value returned by the function to the calling program.

(b) When arguments are passed by value, the function works with the original arguments in the
calling program.

(c) When a function returns a value, the entire function call can be assigned to a variable.

(d) A function can return a value by reference.

(e) When an argument is passed by reference, a temporary variable is created in the calling
program to hold the argument value.

(f) It is not necessary to specify the variable name in the function prototype.

Ans:

(a) FALSE (d) TRUE
(b) FALSE (e) FALSE
(c) TRUE (f) TRUE

4.2: What are the advantages of function prototypes in C++?

Scanned with CamScanner

Ans: Function prototyping is one of the major improvements added to C++ functions. The
prototype describes the function interface to the compiler by giving details such as the number
and type of arguments and the type of return values.

4.3: Describe the different styles of writing prototypes.

Ans:
General form of function prototyping :
return_type function_name (argument_list)

Example :

int do_something (void);
float area (float a, float b);
float area (float. float);

4.4: Find errors, if any, in the following function prototypes.
(a) float average(x.y);

(b) int mul(int a.b);

(c) int display(....);

(d) void Vect(int? &V, int & size);

(e) void print(float data[], size = 201);

Ans:

No. Error Correction

(a) Undefined symbol x, y float average (float x, floaty)
(b) Undefined symbol b int mul (int a, int b);

(c) No error

(d) invalid character in variable name void vect (int &v, int &size);
© Undefined symbol s’ void print (float data [], int

size = 20);

4.5: What is the main advantage of passing arguments by reference?

Ans: When we pass arguments by reference, the formal arguments in the called function become
aliases to the ‘actual’ arguments in the calling function.

4.6: When will you make a function inline? Why?

Ans: When a function contains a small number of statements, then it 1s declared as inline function.

Scanned with CamScanner

By declaring a function inline the execution time can be minimized.
4.7: How does an inline function differ from a preprocessor macro?

Ans: The macos are not really functions and therefore, the usual error checking does not occur
during compilation. But using inline-function this problem can be solved.

4.8: When do we need to use default arguments in a function?

Ans: When some constant values are used in a user defined function, then it is needed to assign a
default value to the parameter.
Example :

1Float area (float r, float P1= 3.1416)
2 |

3 return PI*r#r;
4 }

4.9: What is the significance of an empty parenthesis in a function declaration?
Ans: An empty parentheses implies arguments is void type.

4.10: What do you meant by overloading of a function? When do we use this concept?

Ans: Overloading of a function means the use of the same thing for different purposes.
When we need to design a family of functions-with one function name but with different
argument lists, then we use this concept.

4.11: Comment on the following function definitions:

(a)

Tint *f()

2{
3intm=1;
T

5.....
Greturn(&m);
7}

(b)

Scanned with CamScanner

ldouble f()
2{

s Ay

4.....
Sreturn(1);
6}

(c)

lint & f()
2{

3intn - 10;
4.....

Siviz
Greturn(n);
7)

Ans:

No. Comment

This function returns address of m after
execution this function.

(a)

(b) This function returns 1 after execution.
(c) returns address of n

Debugging Exercises
4.1: Identify the error in the following program.

#include <iostream.h>
int fun()
{

}
float fun()

{
}

void main()

{

return 1;

return 10.23;

cout <<(int)fun() << '";
cout << (float)fun() << '

}

Scanned with CamScanner

Solution: Here two function are same except return type. Function overloading can be used using

different argument type but not return type.

Correction : This error can be solved as follows :

#include<iostream.h>

int fun()
{

return 1;

}
float funl()

{

return 10.23;

}

void main()
{

cout<<fun()<<
cout<<funl()<<

non,

}

4.2: Identify the error in the following program.

#include <iostream.h>
void display(const Int constl=5)
{
const int const2=5;
int arrayl|[constl];
int array2([const2];
for(int 1=0; i<5; 1++)
{
arrayl[i] = i;
array2[i] = i*10;
cout <<arrayl[i]<<''<< array2[i] <<'';
}
}
void main()
{
display(5);
}

Solution:

#include<iostream.h>

Scanned with CamScanner

void display()

{
const int const1=35;
const int const2=5;
int array1[const1];
int array2[const2];

for(int i=0;i<5;14++)

{
arrayl[i]=1;
array2[i]=i1*10;
cout<<arrayl[i]<<

}

non non,
1

<<array2[i]<<
)

void main()
{

display();
}

4.3: Identify the error in the following program.

#include <iostream.h>
int gValue=10;
void extra()

{
}

void main()
{
extra();
{
int gValue = 20;
cout << gValue << '";
cout << : gValue <<'";

}

cout << gValue <<'";

Solution:
Here cout << : gvalue << " "; replace with cout <<::gvalue<<" ",

#include <iostream.h>
int gValue=10;
void extra()

{

Scanned with CamScanner

cout << gValue << * *;

}
void main()
{
extra();
{
int gValue = 20;
cout << gValue << * °;

non,

cout <<::gvalue<< " ";

)

4.4: Find errors, if any, in the following function definition for displaying a matrix: void

display(int A[][], int m, int n)

{
for(1=0; i<m; 1++)
for(j=o; j<n; j++)
cout<<" "<<A[i][j];
cout<<"\n";

}

Solution:
First dimension of an array may be variable but others must be constant.

Here int A [] [] replace by the following code:
int A[][10];

int A[10] [10];

int Al] [size];

int A [size] [size];

Where const int size = 100;
any other numerical value can be assigned to size.

Programming Exercises

4.1: Write a function to read a matrix of size m*n from the keyboard.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3
4 void matrix(int m,int n)

Scanned with CamScanner

float **p;
p=new float*[m];
for(int i=0;i<m;i++)

{
10 pli]J=new float[n];
11}
12 cout<<" Enter "<<m<<"by"<<n<<" matrix elements one by one "<<endl;
13 for(i=0;i<m;i++)
14 |
15 for(int j=0:j<n;j++)
16 {
17 float value;
18 cin>>value;
19 pli]lj]=value;
20)
21 }
22 cout<<" The given matrix is :"<<endl;
23 for(i=0:1<m;i++)
24 |
25 for(int j=0;j<n;j++)
26 {
27 cout<<p[i][jl<<" ™
28 }
29 cout<<™\n";
30)
31}
32
33int main()
34
35 intrc;
36 cout<<" Enter size of matrix : ";
37 cin>>re>c;
38 matrix(r,c);
39 return 0;
40)
output

Enter size of matrix : 3 4

Enter 3 by 4 matrix elements one by one

1

(B

3

3 4
4 5
4 5 6

The given matrix is :

Scanned with CamScanner

o
2
(V8]
EEN

4.2: Write a program to read a matrix of size m*n from the keyboard and display the same
on the screen using function.

Solution:

#include<iostream.h>
#include<iomanip.h>

void matrix(int m,int n)
{
float **p:s
p=new float*[m];
for(int i=0;1<m;i++)
{
10 pli]=new float[n];
11 }
12 cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;
13 for(i=0:1<m:i++)

O 00~ Oy e) B e

14 {

15 for(int j=0;j<n;j++)
16 {

17 float value;

18 cin>>value;

19 pli][j]=value;

20 }

21)

22 cout<<" The given matrix is :"<<end]l;
23 for(i=0:;1<m:i++)

24 |

25 for(int j=0:j<n;j++)
26 {

27 cout<<p[i][jl«<" ™
28 }

29 cout<<"\n";

30)

31)

32

33int main()

344

35 intrc;

36 cout<<" Enter size of matrix : ";

Scanned with CamScanner

37 cin>>re>c;
38 matrix(r.c);

39 return 0;
40)
output

Enter size of matrix : 4 4

Enter 4 by 4 matrix elements one by one

1 2 3 47
2 3 4 5 8
345 6 9

1 2 3 47
2 3 4 5 8
345 69

4.3: Rewrite the program of Exercise 4.2 to make the row parameter of the matrix as a

default argument.

Solution:

#include<iostream.h>
#include<iomanip.h>

1
2
3
4 void matrix(int n,int m=3)
51

6 float **p;

7 p=new float*[m];

8 for(int i=0:1<m;i++)
9 |

10 pli]=new float[n];
11)

12 cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;

13 for(i=0:i<m;i++)

14 |

15 for(int j=0:j<n;j++)
16 {

Scanned with CamScanner

17 float value;

18 cin>>value;

19 plillj]=value;

20 }

21)

22 cout<<" The given matrix is :"<<end]l;
23 for(i=0:i<m:i++)

24 {

25 for(int j=0:j<n;j++)

26 {

27 cout<<p[i][jl«<" "
28 }

29 cout<<"\n";

30)

31)

32

33int main()

34

35 intc;

36 cout<<" Enter column of matrix : ";
37 cin>>c;

38 matrix(c);

39 return 0;

40)

output

Enter column of matrix : 3

Enter 3 by 3 matrix elements one by one

1

2

2 3

3 4

4 5

The given matrix is :

1

2

2 3

3 4

4 5

4.4: The effect of a default argument can be alternatively achieved by overloading. Discuss
with examples.

Scanned with CamScanner

Solution:

O 00~ O s L) D e

24
25
26
27
28
29
30

31)

{

#include<iostream.h>
#include<iomanip.h>

void matrix(int m,int n)

float **p;
p=new float*[m];
for(int i=0;1<m:i++)
{

pli]J=new float|[n];

}

cout<<" Enter "<<m<<"by"<<n<<" matrix elements one by one "<<endl;

for(i=0:i<m;i++)
{
for(int j=0:j<n;j++)
{
float value;
cin>>value;
plillj]=value;
}
}

cout<<" The given matrix is :"<<end]l;
for(i=0:i<m:i++)
{
for(int j=0;j<n;j++)
{
cout<<p[i][jl<<" "
}

cout<<"\n";

}

32void matrix(int m,long int n=3)

33§

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

float **p;
p=new float*[m];

for(int i=0;i<m;i++)
{
pli]=new float[n];

}

cout<<" Enter "<<m<<" by "<<n<<" matrix elements one by one "<<endl;

for(i=0;1<m;i++)
{
for(int j=0:j<n:j++)
{
float value;
cin>>value;

plillj]=value;

Scanned with CamScanner

49
50)

51 cout<<" The given matrix is :"<<end];

52 for(i=0;i<m;i++)

53 |

54 for(int j=0:j<n;j++)
55 {

56 cout<<pl[i][j]<<"
57 }

58 cout<<"\n";

59 }

60}

6l

62int main()

63]

64 intr;

65 cout<<" Enter row of matrix : ";
66 cin>>r;

67 matrix(r);

68 return O;

69)

",

output

Enter column of matrix : 2

Enter 2 by 3 matrix elements one by one
1 0 1

0 2 1

The given matrix is :

1 0 1

0 2 1

4.5: Write a macro that obtains the largest of the three numbers.

Solution:

1 #include<iostream.h>

2 #include<iomanip.h>

3

4 float large(float a,float b.float c)
54

Scanned with CamScanner

6 float largest;

7 if(a>b)

8 |

9 if(a>c)

10 largest=a;

11 else

12 largest=c;

13}

14 else

15 |

16 if(b>c)

17 largest=b;

18 else

19 largest=c;

20)

21 return largest;

22}

23

24int main()

25{

26 float x,y,z;

27 cout<<" Enter three values : ";
28 ci>X>>y>>7;

29 float largest=large(x,y.z);
30 cout<<" large = "<<largest<<endl;
31 return0;

32}

output

Enter three values: 4 5 8

large =8

4.6: Redo Exercise 4.16 using inline function. Test the function using a main function.

Solution:

Blank

4.7: Write a function power() to raise a number m to power n. The function takes a double
value for m and int value for n and returns the result correctly. Use a default value of 2 for
n to make the function to calculate the squares when this argument is omitted. Write a main

that gets the values of m and n from the user to test the function.

Solution:

Scanned with CamScanner

O 00~ O e L) N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28

#include<iostream.h>

#include<iomanip.h>
#include<math.h>

long double power(double m,int n)
{
long double mn=pow(m,n);
return mn;

)

long double power(double m,long int n=2)
{

long double mn=pow(m,n);

return mn;

}

int main()

{
long double mn;
double m;
int n;

cout<<" Enter the value of m & n"<<endl;
cin>>m>>n;

mn=power(m,n);

cout<<" m to power n : "<<mn<<endl;
mn=power(m);

cout<<" m to power n : "<<mn<<endl;
return (;

J

output

Enter the value of m & n

12

m

m

2 6

to power n : 2985984

to power n: 144

4.6: Redo Exercise 4.16 using inline function. Test the function using a main function.

Solution:

Blank

4.7: Write a function power() to raise a number m to power n. The function takes a double
value for m and int value for n and returns the result correctly. Use a default value of 2 for

Scanned with CamScanner

n to make the function to calculate the squares when this argument is omitted. Write a main

that gets the values of m and n from the user to test the function.

Solution:

#include<iostream.h>
#include<iomanip.h>
#include<math.h>

long double power(double m,int n)
{
long double mn=pow(m,n);
return mn;
}
10long double power(double m,long int n=2)
114
12 long double mn=pow(m,n);
13 return mn;
14}
15int main()

(eRe - RIC B e WV I SR OS5

16{

17 long double mn;
18 double m;

19 intn;

20

21 cout<<" Enter the value of m & n"<<endl;
22 cin>>m>>n;

23 mn=power(m,n);

24 cout<<" m to power n : "<<mn<<endl;

25 mn=power(m);

26 cout<<" m to power n : "<<mn<<endl;

27 return 0;

28)

output

Enter the value of m & n
12 6

m to power n : 2985984

m to power n: 144

4.8: Write a function that performs the same operation as that of Exercise 4.18 but takes an
int value for m. Both the functions should have the same name. Write a main that calls both

the functions. Use the concept of function overloading.

Scanned with CamScanner

Solution:

#include<iostream.h>
#include<iomanip.h>
#include<math.h>

long double power(int m,int n)

{
long double mn= (long double)pow(m.n);
return mn;

)

10long double power(int m.long int n=2)

11

12 long double mn=(long double)pow(m,n);

13 return mn;

14)

15int main()

16{

17 long double mn;

O 00~ O e) e

18 intm;
19 intn;
20

21 cout<<" Enter the value of m & n"<<endl;
22 cin>>m>>n;

23 mn=power(m,n);

24 cout<<" m to power n : "<<mn<<endl;
25 mn=power(m);

26 cout<<" m to power n : "<<mn<<endl;
27 return 0;

28}

output

Enter the value of m & n

15 16

m to power n : 6.568408e+18

m to power n: 225

Chapter 5

Review Questions

Scanned with CamScanner

5.1: How do structures in C and C++ differ?

Ans:
C structure member functions are not permitted but in C++ member functions are permitted.

5.2: What is a class? How does it accomplish data hiding?

Ans:
A class is a way to bind the data and its associated functions together. In class we can declare a

data as private for which the functions accomplish data—outside the class can not access the data
and thus if hiding.

5.3: How does a C++ structure differ from a C++ class?

Ans:

Initially (in C) a structure was used to bundle different of data types together to perform a
particular functionality C++ extended the structure to contain functions also. The difference is
that all declarations inside a structure are default public.

5.4: What are objects? How are they created?

Ans:

Object is a member of class. Let us consider a simple example. int a; here a is a variable of int
type. Again consider class fruit.

{

}

here fruit is the class-name. We can create an object as follows:
fruit mango;
here mango is a object.

5.5: How is a member function of a class defined?

Ans:

member function of a class can be defined in two places:
* Qutside the class definition.

* Inside the class definition.

Inside the class definition : same as other normal function.

Outside the class definition : general form:
return-type class-name : function-name (argument list)

Scanned with CamScanner

{

function body

}

5.6: Can we use the same function name for a member function of a class and an outside
function in the same program file? If yes, how are they distinguished? If no, give reasons.

Ans:

Yes, We can distinguish them during calling to main () function. The following example

tllustrates this:

1 #include<iostream.h>
void f()
{

cout<<"QOutside Of class \n";

)

class santo
{

public:
10void f()
11

=RNe JEEN e NV R SR SR (S]

12 cout<<"Inside of class \n";

13}

14};

15

16void main()

17{

18£(); // outside f() is calling.
19santo robin;

20robin.f(); // Inside () is calling.
21)

5.7: Describe the mechanism of accessing data members and member functions in the

following cases:
(a) Inside the main program.

(b) Inside a member function of the same class.
(c) Inside a member function of another class.

Ans:

(a) Using object and dot membership operator.
(b) Just like accessing a local variable of a function.
(c) Using object and dot membership operator.

Scanned with CamScanner

The following example explains how to access data members and member functions inside a
member function of another class.

1 #include<iostream.h>

2

3 classa

4 {

5 public:

6 int x;

7 void display()

8 {

9 cout<<"This is class a \n";
10 x=111;

11)

12};

13

l4class b

15{

16 public:

17 void display()

18 {

19 as;

20 cout<<" Now member function 'display()' of class a is calling from class b \n";
21 s.display();

22 cout<<" x = "<<s.x<<"\n";
23}

24);

25

26void main()

274

28 b billal; // billal is a object of class b.
29 billal.display();
30}

5.8: When do we declare a member of a class static?

Ans:
When we need a new context of a variable the n we declare this variable as static.

5.9: What is a friend function? What are the merits and demerits of using friend functions?

Ans:
A function that acts as a bridge among different classes, then it is called friend function.

Scanned with CamScanner

Merits :
We can access the other class members in our class if we use friend keyword. We can access the
members without inheriting the class.

demerits :
Maximum size of the memory will occupied by objects according to the size of friend members.

5.10: State whether the following statements are TRUE or FALSE.

(a) Data items in a class must always be private.

(b) A function designed as private is accessible only to member functions of that class.
(c) A function designed as public can be accessed like any other ordinary functions.
(d) Member functions defined inside a class specifier become inline functions by default.
(e) Classes can bring together all aspects of an entity in one place.

(f) Class members are public by default.

(g) Friend junctions have access to only public members of a class.

(h) An entire class can be made a friend of another class.

(1) Functions cannot return class objects.

(j) Data members can be initialized inside class specifier.

Ans:

(a) FALSE
(b) TRUE
(¢) FALSE

*A function designed as public can be accessed like any other ordinary functions from the
member function of same class.

(d) TRUE

(e) TRUE

(f) FALSE

(g) FALSE

(h) TRUE

(i) FALSE

(j) FALSE

Debugging Exercises

5.1: Identify the error in the following program

1 #include <iosream.h>

2 struct Room

3

4 int width;

5 intlength;

6 void setValue(int w, int 1)
7 A

8 width = w;

9 length =1;

Scanned with CamScanner

10 }

11};

12void main()

13§

14Room objRoom;
150bjRoom.setValue(12, 1,4);
16}

Solution:
Void setvalue (in w, int 1) function must be public.

5.2: Identify the error in the following program

1 #include <iosream.h>
2 class Room

4 int width, int length;
5 wvoid setValue(int w, int h)
6 |

7 width = w;

8 length = h;

9 |

10};

11void main()

124

13Room objRoom;
14objRoom.width=12;
15}

Solution:

Void setvalue (int w, int 1) function must be public.

5.3: Identify the error in the following program

1 #include <iosream.h>
2 class Item

3

4 private:

5 static int count;
6 public:

7 Item()

8 {

9 count++;

10}

Scanned with CamScanner

11int getCount()

12{
13
14)

return count;

15int* getCountAddress()

16]
17

return count;

18 |

19};

20int Item::count = 0;
21void main()

22
23
24
25
26
27
28
29
30

Item objlteml;
Item objltem?2;

cout << objlteml.getCount() << '";
cout << objltem2.getCount() << '";

cout << objlteml.getCountAddress() << '";

cout << objltem2.getCountAddress() << '

31)

Solution:

int* getCountAddress ()
{

return &count;

}

o=) 9 =

Note: All other code remain unchanged.

5.4: Identify the error in the following program

1 #include <iosream.h>
2 class staticfunction

3

4 static int count;

5 public:

6 static void setCounto()
7 |

8 count++;

9 }

10 void displayCount()
11

12 cout << count;

13 }

Scanned with CamScanner

14};

15int staticFunction::count = 10;
16void main()

17{

18 staticFunction objl;

19 objlsetcount(5);

20 staticFunction::setCount();
21 objl.displayCount();

22)

Solution:
setCount () is a void argument type, so here objl.setCount (5); replace with objl.setcount();

5.5: Identify the error in the following program

#include <iosream.h>
class Length
{

int feet;

float inches;
public:

Length()
{
feet=35;

10 inches = 6.0;
11)
12 Length(int f, float in)
13 {
14 feet=f;
15 inches=in;
16 }
17 Length addLength(Length 1)
18 {
19
20 l.inches this->inches;
21 1.feet += this->feet;
22 if(l.inches>12)
23 {
24
25 l.inches-=12;
26 l.feet++;
27 }
28 return 1;
29 }
30 int getFeet()
31 |
32 return feet;
33)

L=l RN B WV, T S U I §6)

Scanned with CamScanner

34 float getInches()

35 |

36 return inches;

37)

38);

39void main()

404

41

42 Length objLengthl;

43 Length objLenngthl(5, 6.5);

44 objLengthl = objLengthl.addLength(objLength2);

45 cout << objLenthl.getFeet() << '";

46 cout << objLengthl.getInches() <<'";
47)

Solution:
Just write the main function like this:

1 #include<iostream.h>

2

3 void main()

4 {

Length objLengthl;
Length objLength2(5,6.5);

[==RE B =

9 cout<<objLengthl.getFeet()<<
10 cout<<objLengthl.getInches()<<" ";
11}

5.6: Identify the error in the following program

1 #include <iosream.h>
2 class Room
3 void Area()
4 {

5 int width, height;

6 class Room

7

8 int width, height;
9

1

1

public:
0 void setvalue(int w, int h)
1 {
12 width = w;
13 height = h;
14 }

objLengthI=o0bjLengthl.addLenghth(objLenghth2);

Scanned with CamScanner

15 void displayvalues()

16 {

17 cout << (float)width << ' ' << (float)height;
18 }

19 });

20 Room objRooml;

21 objRooml.setValue(12, 8);
22 objRooml.displayvalues();
23}

24

25void main()

26{

27 Area():

28Room objRoom?2;

29}

Solution:
Undefined structure Room in main () function.
Correction : Change the main () Function as follow:

Ivoid main()
2

3 Area();

4}

Programming Exercises
5.1: Define a class to represent a bank account. Include the following members:
Data members:
Name of the depositor.
Account number.

Type of account.
Balance amount in the account.

B

Member functions:

To assign initial values.

To deposit an amount.

To withdraw an amount after checking the balance.
To display the name and balance.

B =

Write a main program to test the program.

Scanned with CamScanner

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 class bank

4 {

5 char name[40];
6 intac_no;

7 char ac_type[20];

8 double balance;

9 public:

10 int assign(void);

11 void deposite(float b);
12 void withdraw(float c);
13 void display(void);

15

16int bank::assign(void)

174

18 float initial;

19 cout<<" You have to pay 500 TK to open your account \n"

20 <<" You have to store at least 500 TK to keep your account active\n"
21 <<"Would you want to open a account????\n"

22 <<"If Yes press 1 \n"

23 <<"IfNopress0:";

24 inttest

25 cin>>test;

26 if(test==1)

27 {

28 initial=500;

29 balance=initial;

30 cout<<" Enter name ,account number & account type to creat account : \n";

31 cin>>name>>ac_no>>ac_type;
32}

33 else

34 :// do nothing

35

36 return test;

37

38}

39void bank::deposite(float b)
40{

41 balance+=b;

42)

43void bank::withdraw(float c¢)
444

45 balance-=c;

46 if(balance<500)

47 |

48 cout<<" Sorry your balance is not sufficient to withdraw "<<c<<"TK\n"

Scanned with CamScanner

49 <<" You have to store at least 500 TK to keep your account active\n";

50 balance+=c;
51 }

52}

53void bank::display(void)
541

55 cout<<setw(12)<<"Name"<<setw(20)<<"Account type"<<setw(12)<<"Balance"<<endl:
56 cout<<setw(12)<<name<<setw(l7)<<ac_type<<setw(14)<<balance<<endl;

57)

58

59int main()

60{

61 bank account;

62

63 int

64 t=account.assign();
65 if(t==1)

66 |

67 cout<<" Would you want to deposite: ?"<<endl

68 <<"If NO press ((zero)"<<endl
69 <<"If YES enter deposite ammount :"<<endl;

70 float dp;

71 cin>>dp;

72 account.deposite(dp);

73 cout<<" Would you want to withdraw : ?"<<endl

74 <<"If NO press 0(zero)"<<endl
15 <<"If YES enter withdrawal ammount :"<<endl;

76 float wd;
77 cin>>wd;
78 account.withdraw(wd);

79 cout<<" see details :"<<endl<<endl;
80 account.display();
81)

82 else if(t==0)

83 cout<<" Thank you ,see again\n";
84 return 0;

85}

output

You have to pay 500 TK to open your account

You have to store at least 500 TK to keep your account active
Would you want to open a account????

If Yes press 1

If Nopress 0:0

Thank you ,see again

Scanned with CamScanner

5.2: Write a class to represent a vector (a series of float values). Include member functions
to perform the following tasks:

(a) To create the vector.

(b) To modify the value of a given element.

(c) To multiply by a scalar value.

(d) To display the vector in the form (10, 20, 30 ...)

Write a program to test your class.

Solution:

#include<iostream.h>
#include<iomanip.h>
class vector
{
float *p;
int size;
public:
void creat_vector(int a);
void set_element(int i.float value);
10 void modify(void);
11 void multiply(float b);
12 void display(void);

el JREN B N T S S R S

14

15void vector::creat_vector(int a)
16{

17 size=a;

18 p=new floatsize];

19}

20void vector::set_element(int i.float value)
214

22 pli]=value;

23}

24void vector :: multiply(float b)
25

26 for(int i=0;i<size:i++)

27 plil=b*plil;

28}

29void vector:: display(void)

30§

31 cout<<"p["<<size<<"] = (";
32 for(int i=0;i<size;i++)

33 {

34 if(i==size-1)

Scanned with CamScanner

35
36
37
38
39
40

41)

42

cout<<pli];
else
cout<<p[i]<<",";

}

cout<<")"<<endl;

43void vector::modify(void)

44{

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67)

68

int i;

cout<<" to edit a given element enter position of the element : ";

cin>>i;

fend

cout<<" Now enter new value of "<<i+1l<<"th element : ";
float v;

cin>>v;

plil=v;

cout<<" Now new contents : "<<endl;

display();

cout<<" to delete an element enter position of the element :";
cin>>i;
s

for(int j=i;j<size;j++)
{
pll=pli+1);
}
size--;
cout<<" New contents : "<<endl;
display();

69int main()

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

vector santo;
ints;
cout<<" enter size of vector : ";
cin>>s;
santo.creat_vector(s);
cout<<" enter "<<s<<" elements one by one :"<<endl;
for(int 1=0;1<s;14++)
{
float v;
cin>>v;
santo.set_element(i.v);
}
cout<<" Now contents :"<<endl;
santo.display();

cout<<" to multiply this vector by a scalar quantity enter this scalar quantity : ";

Scanned with CamScanner

86 float m;
87 cin>>m;
88 santo.multiply(m);

89 cout<<" Now contents : "<<endl;

90 santo.display():

91 santo.modify();

92 return 0;

93}

output

enter size of vector: 5

enter 5 elements one by one :

1T 22 33 44 55

Now contents p[S]=(11 , 22

to multiply this vector by a scalar quantity enter this scalar quantity : 2

Now contents :

. 33,44 |55

pl51=(22, 44 ., 66 , 88 , 110)

to edit a given element enter position of the element : 3

Now enter new value of 3th element : 100

Now new contents :

plS]=(22, 44, 100 , 88 ,

to delete an element enter position of the element :2

New contents :

pl4]=(22 , 100 , 88 , 110)

110)

5.3: Modify the class and the program of Exercise 5.1 for handling 10 customers.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #define size 10

4

char *serial[size]={" FIRST "," SECOND "," THIRD "," 4th "," 5th "," 6th "," 7th "," 8th ","

Scanned with CamScanner

gth u’u lomn }:

class bank
{
char name[40];
int ac_no;
char ac_type[20];
double balance;
public:
int assign(void);
void deposit(float b);
void withdraw(float c);
void displayon(void);
void displayoff(void);
}:

int bank::assign(void)
{
float initial;
cout<<" You have to pay 500 TK to open your account \n"
<<" You have to store at least 500 TK to keep your account active\n"
<<"Would you want to open a account????\n"
<<" If Yes press 1 \n"
<<"If No press 0: ";
int test;
cin>>test;
if(test==1)
{
initial=500;
balance=initial;
cout<<" Enter name ,account number & account type to create account : \n";
cin>>name>>ac_no>>ac_type;
)
else
:// do nothing

return test;

)
void bank::deposit(float b)

{

balance+=b;

}
void bank::withdraw(float c)

balance-=c;
if(balance<500)
{

cout<<" Sorry your balance is not sufficient to withdraw "<<c<<"TK\n"
<<" You have to store at least 500 TK to keep your account active\n";
balance+=c;

Scanned with CamScanner

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

}

}

void bank::displayon(void)

{
}

void bank::displayoff(void)

{

cout<<” Account has not created”<<endl; }

int main()

{

}

{

)

bank account[size];

int t[10];

for(int i=0:i<size:i++)

cout<<setw(l2)<<name<<setw(l7)<<ac_type<<setw(l4)<<balance<<endl;

cout<<" Enter information for "<<serial[i]<<"customer : "<<endl;

t[i]=account|i].assign();

if(t[i]l==1)

{
cout<<" Would you want to deposit: ?"<<endl
<<"If NO press O(zero)"<<end]l
<<"If YES enter deposit amount :"<<endl;
float dp;
cin>>dp;
account[i].deposit(dp);
cout<<" Would you want to with draw : ?"<<endl
<<"If NO press O(zero)"<<endl
<<"If YES enter withdrawal amount :"<<endl;
float wd;
cin>>wd;
account[i].withdraw(wd);
cout<<endl<<endl;

}

else if(t[i]==0)

cout<<"Thank you , see again \n™;

cout<<" see details :"<<endl<<endl;
cout<<setw(12)<<"Name"<<setw(20)<<"Account type"

{

}

<<setw(12)<<"Balance"<<endl;

for(i=0;i<size;i++)

if(tfi]==1)
account[i].displayon();
else if(t[i]==0)
account[i].displayoff():

return 0;

Scanned with CamScanner

Note: Here we will show output only for Three customers. But when you run this program you
can see output for 10 customer.

output

Enter information for FIRST customer :

You have to pay 500 TR to open your account

You have to store at least 500 TR to keep your account active Would you want to open a
account????

If Yes press 1

If Nopress 0: 0

Thank you , see again

Enter information for SECOND customer :

You have to pay 500 TR to open your account

You have to store at least 500 TR to keep your account active Would you want to open a
account????

If Yes press 1

If Nopress0: 1

Enter name ,account number & account type to create account :
Robin 11123 saving

Would you want to deposit: ?

If HO press O(zero)

If YES enter deposit amount :

0

Would you want to with draw : ?

If HO press O(zero)

If YES enter withdrawal amount :

0

Enter information for 3rd customer :

You have to pay 500 TK to open your account

You have to store at least 500 TK to keep your account active Would you want to open a
account????

If Yes press 1

If Nopress0: 1

Enter name ,account number & account type to create account :
Billal 11123 fixed

Would you want to deposit: ?

If HO press O(zero)

If YES enter deposit amount :

1000000

Would you want to with draw : ?

If HO press O(zero)

If YES enter withdrawal amount :

100000
see details :
Name Account type Balance

Account has not created

Scanned with CamScanner

Robin saving 500

Billal fixed 900500

5.4: Modify the class and the program of Exercise 5.12 such that the program would be
able to add two vectors and display the resultant vector. (Note that we can pass objects as

function arguments)

Solution:

#include<iostream.h>
#include<iomanip.h>
#define size 8

class vector

{
float *p;

public:
void creat_vector(void);
10 void set_element(int i.float value);
11 friend void add(vector v1,vector v2);
12
13);
14void vector::creat_vector(void)
15{
16 p=new float[size];
17)
18void vector::set_element(int i,float value)
19{
20 pli]=value;
21}
22void add(vector v1,vector v2)
23]
24
25 float *sum;
26 cout<<"sum["<<size<<"] = (";
27 sum= new float[size];

O 00~ AN e) D e

28
29 for(int i=0;i<size:i++)
30

31 sum[i}=v1.p[i]+v2.p[i];
32 if(i==size-1)

33 cout<<sum|i];

34 else

35 cout<<sumli]<<",";
36)

37 cout<<")"<<endl;

Scanned with CamScanner

38

39}

40

41int main()

424

43 vector x1,x2,x3;

44 xl.creat_vector();

45 x2.creat_vector();

46 x3.creat_vector();

47 cout<<" Enter "<<size<<" elements of FIRST vector : ";
48 for(int i=0:i<size:;1++)

49 {

50 float v;

51 cin>>v;

52 x1.set_element(i,v):
53 }

54

55 cout<<" Enter "<<size<<" elements of SECOND vector : ";
56 for(i=0:1<size;i++)

57 |

58 float v;

59 cin>>v;

60 x2.set_element(i,v);

6l)

62 add(xl,x2);
63

64 return 0;
65)

output
Enter 8 elements of FIRST vector: 4 78 24 3 2 9
Enter 8 elements of SECOND vector: 1 2 34567 8

sum[8]=(5,9,11,6,9.,9,9.,17)

5.5: Create two classes DM and DB which store the value of distances. DM stores distances
in meters and centimeters and DB in feet and inches. Write a program that can read values
for the class objects and add one object of DM with another object of DB.

Use a friend function to carry out the addition operation. The object that stores the results
may be a DM object or DB object, depending on the units in which the results are required.
The display should be in the format of feet and inches or meters and centimeters depending
on the ohject on display.

Solution:

Scanned with CamScanner

1 #include<iostream.h>
2 #define factor 0.3048

3 class DB;

4 class DM

51

6 float d;

7 public:

8 void store(float x){d=x;}

9 friend void sum(DM.DB);

10 void show();

11}

12class DB

13{

14 float d1;

15 public:

16 void store(float y) {d1=y;}

17 friend void sum(DM,DB);

18 void show();

19};

20

21void DM::show()

224

23

24 cout<<"\n Distance = "<<d<<" meter or "<<d*100<<" centimeter\n";
25)

26

27void DB::show()

28]

29

30 cout<<"\n Distance = "<<dl<<" feet or "<<d1*12<<" inches \n";
31}

32void sum(DM m,DB b)

33§

34

35 float sum;

36

37 sum=m.d+b.d 1 *factor;

38 float f;

39 f=sum/factor;

40 DM ml;

41 DB bl;

42

43 ml.store(sum);

44 bl store(f);

45

46 cout<<" press | to display result in meter\n"
47 <<" press 2 to display result in feet \n"
48 <<" What is your option 7 : ";
49 int test;

50 cin>>test;

51

n,

Scanned with CamScanner

52 if(test==1)
53 m1l.show();
54 else if(test==2)
55 bl.show();
56

57

58}

59

60

61int main()

62{

63 DMdm;

64 DB db;

65 dm.store(10.5);
66 db.store(12.3);
67 sum(dm,db):

68 return 0;

69}

output

Press 1 to display result in meter
Press 2 to display result in feet

What is your option ? 1

Distance = 14.24904 meter or 1424 903931 centimeter

Chapter 6

Review Questions

6.1: What is a constructor? Is it mandatory to use constructors in a class?

Ans:A constructor is a “special’ member function whose task is to initialize the object of its class.

It is not mandatory to use constructor in a class.

6.2: How do we invoke a constructor function?

Ans:Constructor function are invoked automatically when the objects are created.

6.3: List some of the special properties of the constructor functions,

Ans:Special properties of the constructor functions:

Scanned with CamScanner

. They should be declared in the public section.

. They are invoked automatically when the objects are created.
. They do not have return type, not even void.

. They cannot be inherited.

. Like other C++ functions, they can have default arguments.

. Constructors cannot be virtual.

(o R O O

6.4: What is a parameterized constructor?

Ans:The constructors that can take arguments are called parameterized constructors.

6.5: Can we have more than one constructors in a class? If yes, explain the need for such a
situation.

Ans:Yes, we have when we need to overload the constructor, then we have to do this.

6.6: What do you mean by dynamic initialization of objects? Why do we need to this?

Ans:Initializing value of object during run time is called dynamic initialization of objects.
One advantage of dynamic initialization is that we can provide various initialization formats
using overloaded constructors.

6.7: How is dynamic initialization of objects achieved?

Ans:Appropriate function of a object is invoked during run-time and thus dynamic initialization
of object is achieved.

Consider following constructor:

santo (int p, int g, floatr);

santo (int p, int g, int r);

It two int type value and one float type value are passed then sant (int p, int q, float r) is invoked.
It three int type value are passed then santo (int p, into g, int r) is invoked.

6.8: Distinguish between the following two statements:
time T2(T1);

time T2=TI;

T1 and T2 are objects of time class.

Ans:
time T2 (T1); ==> explicitly called of copy constructor
time T2 = T1; ==> implicitly called of copy constructor.

Scanned with CamScanner

6.9: Describe the importance of destructors.

Ans:Destructors are important to release memory space for future use.

6.10: State whether the following statements are TRUE or FALSE.

(a) Constructors, like other member functions, can be declared anywhere in the class.
(b) Constructors do not return any values.

(c) A constructor that accepts no parameter is known as the default constructor.

(d) A class should have at least one constructor.

(e) Destructors never take any argument.

Ans:

(a) FALSE
(b) TRUE
(c) TRUE
(d) TRUE
(e) TRUE

Debugging Exercises
6.1: Identify the error in the following program.

#include <iostream.h>
class Room

{

int length;
int width;
public:
Room(int 1, int w=0):
width(w),

0 length(1)

{

}

—A\D 00~ N WU B e

o
[]

13);

14void main()

15{

16Room objRooml;

17Room objRoom2(12, 8);

18}

191

20</br>

2lSolution:Here there is no default constructor, so object could not be
22written without any argument.

Scanned with CamScanner

23Correction :

241

25 Void main ()

26 {

27 Room Objroom2(12.8);

1.

6.2: Identify the error in the following program.

#include <iostream.h>
class Room

{

int length;
int width;
public:
Room()
{
10 length=0;
11 width=0;
12)
13Room(int value=8)

O 00~ O e) D e

14 {

15 length = width =8;
16)

17void display()

18 {

19 cout<<length<< "' <<width;
20)

21});

22void main()

23{

24Room objRooml;

250bjRooml . display();

Solution:Room() and Room(int value=8) Functions are same, so it show Ambiguity error.

Correction : Erase Room() function and then error will not show.

6.3: Identify the error in the following program.

#include <iostream.h>
class Room

{
int width;

int height;

S N O

Scanned with CamScanner

6 public:

7 void Room()

8 |

9 width=12;

10 height=8;

11 }

12Room(Roomé& 1)

13 {

14 width =r.width;

15 height=r.height;

16 copyConsCount++;
17 }

18void discopyConsCount()
19 {

20 cout<<copyConsCount;
21 }

22};

23int Room::copyConsCount = (;

24void main()

25{

26Room objRooml;

27Room objroom2(objRooml);

28Room objRoom3 = objRoom1;

29Room objRoomd;
30objRoom4 = objRoom3;

31objRoom4.dicopyConsCount();

32}

Solution: Just erase “objRoom4 = objRoom3; invalid to call copy constructor.” for successfully

run.

6.4: Identify the error in the following program.

1 #include <iostream.h>
2 class Room
3¢
4 int width;
5 int height;
6 static int copyConsCount;
7 public:
8 void Room()
{
10 width=12;
11 height=8;
12 }
13Room(Roomé& r)
14 {
15 width =r.width;

o

Scanned with CamScanner

16 height=r.height;

17 copyConsCount++;

18 }

19void discopyConsCount()

20 {

21 cout<<copyConsCount;
22 }

23);

24int Room::copyConsCount = 0;
25void main()

261

27Room objRooml;

28Room objroom2(objRoom]1);
29Room objRoom3 = objRoom1;
30Room objRoom4;
31objRoom4 = objRoom3;
32objRoom4.dicopyConsCount();
33}

Solution: Same as 6.3 problem solution.

Programming Exercises

6.1: Design constructors for the classes designed in Programming Exercise 5.1 through 5.5
of Chapter 5.

Solution: Study on Constructor and then see solution of chapter 5.

6.2: Define a class String that could work as a user-defined string type. Include
constructors that will enable us to create an uninitialized string:

String s1; // string with length 0

And also initialize an object with a string constant at the time of creation like
String s2(*Well done!™);

Include a function that adds two strings to make a third string. Note that the statement
S2=sl;

will be perfectly reasonable expression to copy one string to another.

Write a complete program to test your class to see that it does the following tasks:
(a) Creates uninitialized string objects.

(b) Creates objects with string constants.

(c) Concatenates two strings properly.

(d) Displays a desired string object.

Scanned with CamScanner

Solution:

#include
#include
class string
{

char *str;
int length;

public:

string()

10{

I1length =0;

12str = new char [length + 1] ;

13}

14string(char *s);

15void concat(string &m,string &:n);
16string(string &:x);

17void display();

18

19);

20string::string(string &x)
21

22length = x.length + strlen(x.str);
23str = new char[length + 1];
24strepy(str, X.str);

25

26}

27void string:: concat(string &:m,string &:n)
28{

29length=m.length+n.length;
30delete str;

31str=new char[length+1];

O 00~ O e L) D e

32strepy(str,m.str);
33strcat(str,n.str);

34}

35void string:: display()

361

37cout< <str<: &lIt;"\n";
38}

39string::string(char *s)

40{

41length = strlen(s);

42str = new char[length + 1];
43strepy(str,s);

44}

45

46int main()

47

48string s1;

Scanned with CamScanner

49string s2(" Well done ");

50string s3(" Badly done ");

51s2.display();
52sl.concat(s2,53);
5352=s3;

5452 display();
55s1.display();
S6return (;

57)

output
Well done

Badly done
Well done Badly done

6.3: A book shop maintains the inventory of books that are being sold at the shop. The list
includes details such as author, title, price, publisher and stock position. Whenever a
customer wants a book, the sales person inputs the title and author and the system searches
the list and displays whether it is available or not. If it is not, an appropriate message is
displayed. If it is, then the system displays the book details and requests for the number of
copies required. If the requested copies are available, the total cost of the requested copies is

displayed; otherwise “Required copies not in stock” is displayed.

Design a system using a class called books with suitable member functions and constructors.

Use new operator in constructors to allocate memory space required.

Solution:

#include
#include
#include
#include
#include

class book

{

char **author;
char **title;

float *price;

char **publisher;
int *stock_copy;
int size;

»—Exooouc\m.p-wm.—-

[a—
~J

I

[
(¥N]

public:

book();

void book_detail(int 1);
void buy(int 1);

P o f—
O 00~y h o

Scanned with CamScanner

20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70

int search();

)i

book :: book()

{

size=4;

author=new char*[80];
title=new char*[80];
publisher=new char*[80];

for(int 1=0:1&1t;s1ze;1++)

{

author[i]=new char[80];
title[i]=new char[80];
publisher|i]=new char[80];
)

stock_copy=new int[size];
price=new float[size];

title[0]="object oriented programming with c++";

title[1]="programming in ANCI";
title[2]="electronic circuit theory";
title[3]="computer algorithm";

author[0]="balagurusamy";
author[1]="balagurusamy"
author[2]="boyelstade";
author|3]="shahani";

stock_copy[0]=200;
stock_copy[1]=150;
stock_copy[2]=50;
stock_copy[3]=80;

price[0]=120.5;
price[1]=115.75;
price[2]=140;
price[3]=180.5;

)
void book::book_detail(int 1)

{

cout<<" +####+xkpook detail **+*=# =4\,

cout< <setw(12) &It < "Title" &It; <setw(25) &It; &It " Author Name”

< <:setw(18)<: <"Stock copy\n”;

cout<: <setw(15)&It; &It title[1] < <:setw(16) &1t <author[i] < <setw(15)

< <:stock_copy[i]< &It "\n";

}
int book::search()

{

Scanned with CamScanner

71 char name[80],t[80];

72 cout<:<"Enter author name : ";
73

74 gets(name);

75 cout<<"and title of book in small letter : ";
76 gets(t);

77

78 int count=-1;

79 int a,b;

80 for(int 1=0:1&t:s1ze:;1++)

81 {

82

83 a=strcmp(name,author(i]);

84 b=stremp(t,title[i]);

85 if(a==0 &:& b==0)

86

87 count=i;

88

89 }

90

91 return count;

92 }

93

94 void book::buy(int 1)

95 |

96 if(i<0)

97 cout<<" This book is not available \n";
98

99 else

100{

101book_detail(1);

102cout<<" How many copies of this book is required : ? "; int copy; cin>>copy;
103int remaining_copy;
104if(copy<=stock_copyl[i])

105]
106remaining_copy=stock_copy|i]-copy;
107float total_price;
108total_price=price[i]*copy;
109cout< <"Total price = "< <total _price< <" TK\n";
110}

111else

112cout<:<" Sorry your required copies is not available \n";
113}

114}

115

116int main()

117

118book bl;

119int result;

120

12 1result=b1.search();

Scanned with CamScanner

122b1.buy(result);
123return 0;

124}

output

Enter author name : shahani

and title of book in small latter : computer algorithm

FxdfkdkRdhook detai] FHFEEFEwkdkE

Title Author Name Stock copy
computer algorithm shahani 80

How many copies of this book is required : 7 78

Total price = 14079 TK

6.4: Improve the system design in Exercise 6.3 to incorporate the following features:

(a) The price of the books should be updated as and when required. Use a private member
function to implement this.

(b) The stock value of each book should be automatically updated as soon as a transaction is
completed.

(¢) The number of successful and unsuccessful transactions should be recorded for the
purpose of statistical analysis. Use static data members to keep count of transactions.

Solution:

1 #include

2 #include

3 #include

4 {#include

5 #include

6

7 class book

8

9 static int successful,unsuccessful;

10 char **author;
11 char **title;

12 float *price;

13 char **publisher;
14 int #stock_copy:
15 int size;

17 public:

Scanned with CamScanner

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

book();

void book_detail(int i);
void buy(int 1);

int search();

void showtransaction();
void showdetail();

void edit_price();

}:

int book::successful=0;
int book::unsuccessful=0;

book :: book()

{

size=5;

author=new char*[80];
title=new char*[80];
publisher=new char*[80];

for(int 1=0;1&1t:s1ze;1++)

{

author[i]=new char[80];
title[i]=new char[80];
publisher[i]=new char[80];
}

stock_copy=new int[size];
price=new float[size];

title[0]="object oriented programming with c++";
title[1]="programming in ANCI";
title[2]="electronic circuit theory";
title[3]="computer algorithm";

title[4]="complete solution of balagurusamy(c++)";

author[0]="balagurusamy";
author[1]="balagurusamy"
author[2]="boyelstade";
author[3]="shahani";
author[4]="abdus sattar";

stock_copy[0]=200;
stock_copy[1]=150;
stock_copy[2]=50;
stock_copy[3]=80;
stock_copy[4]=300;

price[0]=120.5;
price[1]=115.75;
price[2]=140;
price[3]=180.5;
price[4]=120;

Scanned with CamScanner

69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

}

void book::book_detail(int 1)
{

cout<<" +=###+xkhook detail **+*=##54\n";

comt< <setw(25) &It &l "Title " &l <setw(30) < &t " Author Name"

<: <:setw(18)< <"Stock copy\n";

cout<<:setw(15)< <title[1] <: <:setw(16)<: <author|i] < <setw(15)

< <:stock_copyli]<<"\n";
}

int book::search()

{

char name([80],t[80];

cout<<"Enter author name in small letter : ";
gets(name);

cout<<" title of book in small letter : ";
gets(t);

int count=-1;

int a,b;

for(int i=0:1&It;size;i++)

{

a=strcmp(name,author(i]);
b=stremp(t.title[i]);

if(a==0 &:& b==0)

count=i;

101}

102

103return count;
104}

105

106void book::buy(int 1)

107

108if(i<0)

109{

1 10cout<<" This book is not available \n";
111unsuccessful++;

112}

113

114else

115{
116book_detail(i);
117cout<:<" How many copies of this book is required : ? "; int copy; cin>>copy:

118

119if(copy<:=stock_copyl[i])

Scanned with CamScanner

1204

121stock_copy[i]=stock_copy[i]-copy:

122float total _price;

123total _price=price[i]*copy;

124cout<&lIt;"Total price = "&It:<total_price< &It TK\n";
125successful++;

126}

127else

128

129cout< &It;" Sorry your required copies is not available \n";
130unsuccessful++;

131}

132}

133}

134

135void book::edit_price()

136]

137cout<<" To edit price ";

138int i;

139i=search();

140cout&It:&It;"Enter new price : " float p; cin>:>p:
141price[i]=p;

142}

143void book::showdetail()

144

145cout< <setw(22) &1t &It "Title " &It &t setw(30) &1t &1t stock copy "<:<:setw(20)
146&l1t;<" Price per book "<: <endl;

147for(int i=0;1<size;i++)

148]

149cout<: <:setw(35) &1t <title[1] &l1t: &It setw(10) &1t &It stock_copyli]
150&I1t; <:setw(18) &It &t price[1] <: <:endl;

151}

152}

153void book::showtransaction()

154

155cout< <:setw(22)&I1t; &I1t;"Successful transaction” < <setw(34)
156&It:&1t; "unsuccessful transaction "&It:<endl< <setw(10)
157 &It; <:successful < <:setw(32) &1t; <unsuccessful &It; <:endl;
158}

159

160int main()

161]

162book bl;

163int result;

164

165result=b1.search();

166b1.buy(result);

167b1.showdetail();

168b1.showtransaction();

169b1 edit_price();

170cout≤ < " ##atk 2w+ details after edit price

Scanned with CamScanner

17 [k ks %440 & |- & | t:endl;
172b1.showdetail();

173

174return 0;

175}

output
Enter author name in small letter : abdus sattar

title of book in small letter : complete solution of balagurusamy(c++)

FhEkEREREhnok detai] FFFEFEERER

Title Author Name Stock copy

complete solution of balagurusamy(c++) abdus sattar 300
How many copies of this book is required : ? 100

Total price = 12000 TK

Title stock copy Price per book
object oriented programming with c++ 200 120.5
programming in ANCI 150 115.75
electronic circuit theory 50 140
computer algorithm 80 180.5
complete solution of balagurusamy(c++) 200 120

Successful transaction unsuccessful transaction

1 0

To edit price Enter author name in small letter : shahani
title of book in small letter : computer algorithm
Enter new price : 200

EFkkkkRRdEk Jatailg after edit price*$*$=l=*$$***-‘k*‘k**:{ﬂ

Title stock copy Price per book

Scanned with CamScanner

object oriented programming with c++ 200

programming in ANCI 150
electronic circuit theory 50
computer algorithm 80

complete solution of balagurusamy(c++) 200

Chapter 7
Review Questions

7.1: What is operator overloading?

120.5

115.75

140

Ans: The mechanism of giving special meaning to an operator is known as operator overloading.

7.2: Why is it necessary to overload an operator?

Ans: We can almost create a new language of our own by the creative use of the function and

operator overloading techniques.

7.3: What is an operator function? Describe the syntax of an operator function.

Ans: To define an additional task to an operator, we must specify what it means in relation to the
class to which the operator is applied. By which function this is done, is called operator function.

Syntax of operator function:

return type class name : : operator OP (argument list)

{

function body // task defined

}

7.4: How many arguments are required in the definition of an overloaded unary operator?

Ans: No arguments are required.

Scanned with CamScanner

7.5: A class alpha has a constructor as follows:
alpha(int a, double b);
Can we use this constructor to convert types?

Ans: No. The constructors used for the type conversion take a single argument whose type is to
be converted.

7.6: What is a conversion function How is it created Explain its syntax,

Ans: C++ allows us to define an overloaded casting operator that could be used to convert a class
type data to a basic type. This is referred to conversion function.
Syntax:

Operator type name ()

(Function Statements)

}

7.7: A friend function cannot be used to overload the assignment operator =, Explain why?

Ans: A friend function is a non-member function of the class to which it has been defined as
friend. Therefore it just uses the functionality (functions and data) of the class. So it does not
consist the implementation for that class. That’s why it cannot be used to overload the assignment
operator.

7.8: When is a friend function compulsory? Give an example.

Ans: When we need to use two different types of operands for a binary operator, then we must
use friend function.

Example:
A=B+2

or

A=B*2;

is valid
ButA=2+B
or

A =2* B will not work.
Because the left hand operand is responsible for invoking the member function. In this case friend
function allows both approaches.

Scanned with CamScanner

7.9: We have two classes X and Y. If a is an object of X and b is an object of Y and we want
to say a = b; What type of conversion routine should be used and where?

Ans: We have to use one class to another class type conversion. The type-conversion function to
be located in the source class or in the destination class.

7.10: State whether the following statements are TRUE or FALSE.

(a) Using the operator overloading concept, we can change the meaning of an operator.

(b) Operator overloading works when applied to class objects only.

(c) Friend functions cannot be used to overload operators.

(d) When using an overloaded binary operator, the left operand is implicitly passed to the member
function.

(e) The overloaded operator must have at least one operand that is user-defined type.

(f)Operator functions never return a value.

(g) Through operator overloading, a class type data can be converted to a basic type data.

(h) A constructor can be used to convert a basic type to a class type data.

Ans:

(a) FALSE
(b) TRUE
(c) FALSE
(d) FALSE
(e) TRUE
(f) FALSE
(2) TRUE
(h) TRUE

Debugging Exercises
7.1: Identify the error in the following program.

#include <iostream.h>
class Space
{

int mCount;
public:

Space()

{

}

mCount = 0;

Space operator ++()

{

mCount++;
return Space(mCount);

Scanned with CamScanner

}
b
void main()
{
Space objSpace;
objSpace++;

}

Solution: The argument of Space() function is void type, so when this function is called there are
no argument can send to it. But ‘mCount’ argument is sending to Space() function through return
space(mCount); Statement.

Here return space (mCount); replaced by return space():

7.2: Identify the error in the following program.

#include <iostream.h>
enum WeekDays
{
mSunday'
mMonday,
mtuesday,
mWednesday,
mThursday,
mFriday,
mSaturday
|
bool op==(WeekDays& w1, WeekDays& w2)
{
if(wl== mSunday && w2==mSunday)
return 1;
else if(wl==mSunday && w2==mSunday)
return 1;
else if(wl==mSunday && w2==mSunday)
return 1;
else if(wl==mSunday && w2==mSunday)
return 1;
else if(wl==mSunday && w2==mSunday)
return 1:
else if(wl==mSunday && w2==mSunday)
return 1;
else if(wl==mSunday && w2==mSunday)
return 1;
else
return 0;
}
void main()

{
WeekDays wl = mSunday, w2 = mSunday;

Scanned with CamScanner

if(wl==w2)
cout<<"Same day";
else

cout<<"Different day";

Solution: bool OP = = (WeekDays & w1, WeekDays & w2) replaced by bool operator = =

(Weekdays & wl, WeekDays & w2). All other code will remain same.

7.3: Identify the error in the following program.

#include <iostream.h>
class Room
{

float mWidth;

float mLength;
public:

Room()

{

}

Room(float w, float h)
:mWidth(w), mLength(h)
{
)
operator float ()
{
return (float)mWidth * mLength;

}

float getWidth()

{
)
float getLength()

{
return mLength;
}
)i

void main()

{
Room objRoom(2.5, 2.5)
float fTotal Area;
fTotal Area = objRooml;
cout<< fTotal Area;

Scanned with CamScanner

Solution: The float getWidth() function return float type data, but there is no return statement in
getWidth() function. So it should write as follows.

float getWidth()
{

return mWidth;

)

All other code will remain unchanged.

Programming Exercises

7.1: Crate a class FLOAT that contains one float data member. Overload all the four
arithmetic operators so that they operate on the objects of FLOAT.

Solution:

1 #include<iostream.h>

2

3 class FLOAT

4 {

5 float data;

6 public:

7 FLOAT(){ }:

8 FLOAT (float d)

9 { data=d;}

10 FLOAT operator+FLOAT f1);
11 FLOAT operator-(FLOAT f2);
12 FLOAT operator*(FLOAT {3);
13 FLOAT operator/(FLOAT f4);
14 void display();

15});

16FLOAT FLOAT::operator+(FLOAT f1)
17{

18 FLOAT temp;

19 temp.data=data+f1.data;

20 return (temp);

21}
22FLOAT FLOAT::operator-(FLOAT {2)

23{

24 FLOAT temp;

25 temp.data=data-f2.data;
26 return temp;

27}

28FLOAT FLOAT::operator*(FLOAT {3)

Scanned with CamScanner

29{

30 FLOAT temp;

31 temp.data=data*f3.data;

32 return temp;

33}

34FLOAT FLOAT::operator/(FLOAT {4)
351

36 FLOAT temp;

37 temp.data=data/f4.data;
38 return (temp);

39}

40void FLOAT:: display()

414

42 cout<<data<<"\n";

43)

44int main()

45{

46 FLOAT F1,F2,F3,F4 F5 Fé6;
47 F1=FLOAT(2.5);
48 F2=FLOAT(3.1);
49 F3=F1+F2;

50 F4=F1-F2;

51 F5=FI1*F2;

52 F6=F1/F2;

53 cout<<" Fl=";
54 Fl.display();

55 cout<<" F2=";
56 F2 display();

57 cout<<" FI4+F2 =",
58 F3.display();

59 cout<<" FI-F2=";
60 F4 display();

61 cout<<" FI*F2=";
62 F5.display();

63 cout<<" FI/F2=";
64 Fé6.display();

65 return 0;

66}

output

F1=25

F2=3.1

FI1+F2=56

F1-F2=-0.6

F1*F2 =17.75

F1/F2= 0.806452

Scanned with CamScanner

7.2: Design a class Polar which describes a point in the plane using polar coordinates radius

and angle. A point in polar coordinates is shown below figure 7.3
Use the overload + operator to add two objects of Polar.

Note that we cannot add polar values of two points directly. This requires first the conversion of
points into rectangular coordinates, then adding the respective rectangular coordinates and finally
converting the result back into polar coordinates. You need to use the following trigonometric

formula:
X=r*
cos(a);
point(r,a)
Radius
Angle=a

> x4

fig: polar coordinates of a point

y =r * sin(a);
a = atan(y/x); //arc tangent
r = sqri(x*x + y*y);

Solution:

1 #include<iostream.h>

2 #include<math.h>

3 #define pi 3.1416

4 class polar

5

6 float r,a,x.y;

7 public:

8 polar(){ }:

9 polar(float rl.float al);
10 polar operator+(polar rl);
11 void display(void);
12};

13

14polar :: polar(float r1,float al)

15{

16 r=rl;

17 a=al*(pi/180);

Scanned with CamScanner

18 x=r*cos(a);

n,

19 y=r*sin(a);

20}

21

22polar polar :: operator+(polar rl)
231

24 polar R;

25

26 Rax=x+rl.x;

27 Ruy=y+rl.y;

28 Rur=sqgrt(R.x*R.x+R.y*R.y);
29 R.a=atan(R.y/R.x);

30

31 returnR;

32}

33

34void polar::display()

351

36 cout<<"radius = "<<r<<"\n angle = "<<a*(180/pi)<<"\n";
37}

38

39int main()

40{

41 polar pl,p2,p3:

42 floatr.a;

43 cout<<" Enter radius and angle : ";
44 cin>>r>>a;

45 pl=polar(r,a);

46 p2=polar(8,45);
47 p3=pl+p2:

48 cout<<" pl:\n";
49 pl.display():

50 cout<<" p2:\n";
51 p2.display();

52 cout<<"p3:\n";
53 p3.display():

54 return 0

55}

output

Enter radius and angle : 10 45

Pl:

radius = 10

angle = 44999998
P2:

radius = 8

angle = 44.999998
P3:

radius = 18

angle = 44.999998

Scanned with CamScanner

7.3: Create a class MAT of size m # n. Define all possible matrix operations for MAT type

objects.

Solution:

1 #include<iostream.h>

2 #include<iomanip.h>

3

4 class mat

5 1

6 float **m;

7 int rs,Cs;

8 public:

9 mat(){}

10 void creat(int r,int c);

11 friend istream & operator >>(istream & ,mat &);
12 friend ostream & operator <<(ostream &.mat &);
13 mat operator+(mat m2);
14 mat operator-(mat m2);

15 mat operator*(mat m2);
16 };

17

18 void mat::creat(int r.int ¢)

19 |

20 IS=T;

21 CS=C;

22 m=new float *[r];

23 for(int i=0:1<r;i++)

24 m[i]=new float1;

25 }

26

27 istream & operator>>(istream &din, mat &a)
28 {

29 intr,c;

30 I=a.rs:

31 C=a.Cs;

32 for(int 1=0:1<r;1++)

33 {

34 for(int j=0;j<cij++)
35 {

36 din>>a.m[i][j];
37 }

38 }

39 return (din);

40 }

41 ostream & operator<<(ostream &dout,mat &a)
42 {

43 int r.c;

Scanned with CamScanner

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

r=a.rs;
c=4a.cs;

for(int i=0:1<r:;i++)
{

for(int j=0;j<c;j++)

dout<<setw(5)<<a.m[i][j];
c}lout<<" \n";

return (do}ul);
r}nat mat::operator+(mat m2)
! mat mt;

mt.creat(rs,cs);

for(int 1=0;i<rs;i++)

{ for(int j=0;j<cs:;j++)

ljll-m[i][i]=m[i][i]+m2-m[i]Li]:

)

return mt;

}

mat mat::operator-(mat m2)
{
mat mt;
mit.creat(rs,cs);
for(int i=0;i<rs;i++)
{
for(int j=0;j<cs;j++)

{

}
}

refurn mt;

}

mt.m[i][j]=ml[i]{j]-m2.m[i][j];

mat mat::operator*(mat m2)

{

mat mt;
mt.creat(rs,m2.cs);

for(int i=0;i<rs;i++)
{
for(int j=0:;j<m2.cs:;j++)
{
mt.m[i][j]=0;
for(int k=0;k<m2.rs;k++)

Scanned with CamScanner

95
96
97 }
98

mt.m(i][jl+=mli][k]*m2.m[k][j]:

99 return mt;

100 }
101int main()
1024

103 mat ml,m2,m3.m4,m5;
104 intrl,cl,r2,c2;

105 cout<<" Enter first matrix size : ";
106 cin>>rl>>cl;

107 ml.creat(rl.cl);

108 cout<<"ml =";

109 cin>>ml;

110 cout<<" Enter second matrix size : ";
111 cin>>r2>>c2;

12 m2.creat(r2,c2);

113 cout<<"'m2 =";

114 cin>>m2;

115 cout<<" ml:"<<endl;

116 cout<<ml;

117 cout<<" m2: "<<endl;

118 cout<<m?2;

119 cout<<endl<<endl,;

120 if(rl==r2 && cl==c2)

121 {

122 m3.creat(rl,cl);

123 m3=ml+m2;

124 cout<<" ml + m2: "<<endl;
125 cout<<m3<<endl;

126 mé.creat(rl,cl);

127

128 md=ml-m2;

129 cout<<" ml - m2:"<<endl;
130 cout<<md<<endl<<endl;
131

132 }

133 else

134 cout<<" Summation & substraction are not possible n"<<endl

135 <<"Two matrices must be same size for summation & substraction "<<endl<<endl;

136if(c1==r2)
137{

138 mS=ml*m?2;

139 cout<<" ml x m2: "<<endl;
140 cout<<ms;

141)

142else

143cout<<" Multiplication is not possible "<<endl

144<<" column of first matrix must be equal to the row of second matrix ";

145 return 0;

Scanned with CamScanner

146)

output

[§]

Enter first matrix size : 2

ml =

1 2

3 4

=]
(3]

Enter second matrix size :

4 4
ml x m2:

19 22

Scanned with CamScanner

43 50

7.4: Define a class String. Use overload == operator to compare two strings.

Solution:

#include<iostream.h>
#include<string.h>
#include<stdio.h>

class string
{
char str[1000];
public:
void input(){ gets(str); }
10 int operator==(string s2);
11};
12int string::operator==(string s2)
13{
14 int t= strcmp(str,s2.str);
15 if(t==0)
16 t=1;
17 else
18 t=0;
19 return t;
20}
21

00 ~1 OV h &) b9 =

D

22int main()

23{

24

25 char st1[1000],st2[1000]:
26 string s1,s2;

27 cout<<" Enter Ist string : ";

28 sl.input();

29 cout<<" enter 2nd string : ";

30 s2.input();

31

32 if(s1==s2)

33 cout<<" Two strings are equal ";
34 else

35 cout<<" Two string are not equal ";
36 return 0;

37}

output

Scanned with CamScanner

Enter 1st string : our sweetest songs tel our saddest thought
enter 2nd string : a burning desire lead to success.
Two string are not equal

7.5: Define two classes Polar and Rectangle to represent points in the polar and rectangle
systems. Use conversion routines to convert from one system to the other.

Solution:

1 #include<iostream.h>

2 #include<math.h>

3 #define pi 3.1416

4 class conversion_point

54

6 float x,y,r.theta;

7 public:

8 void set_xy();

9 void set_r_theta();

10 void show_xy();

11 void show_r_theta();

12 void conversion(int t);

13};

14 void conversion_point::set_xy()

15{

16 cout<<"Enter the value of x & y : ";
17 CIN>>X>>Y;

18}

19 void conversion_point::set_r_theta()
20§

21 cout<<"Enter the value of r & theta :";
22 cin>>r>>theta;

23 theta=(pi/180)*theta;

24}

25

26 void conversion_point::show_xy()
271

28 cout<<" CERTECIAN FORM :\n"
29 <<" X = "<<x<<"\n"

30 <<"y="<<y<<"\n";

31)

32void conversion_point::show_r_theta()
33§

34 cout<<" POLAR FORM :\n"

35 <<" 1= "<<r<<"\n"

36 <<" theta = "<<(180/pi)*theta<<" degree \n";
37}

38

39void conversion_point::conversion(int t)

Scanned with CamScanner

40{
4]
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

if(t==1)
{

r=sqrt(x*x+y*y);

if(x!=0)
{

theta=atan(y/x);
show_r_theta();

cout<<" POLAR FORM :\n"
<<"r="<<r<<"\n"
<<" theta = 90 degree\n";

}

59 else if(t==2)

60
61
62
63
64
65)
66

{
x=r*cos(theta);
y=r*sin(theta);
show_xy();

67int main()

68(
69
70
71
72
73
74
75
76
77
78
79
80

conversion_point santo;
int test;

cout<<" press 1 to input certecian point \n"

<<" press 2 to input polar point \n "
<<" what is your input 7 : ";
cin>>test;

if(test==1)

santo.set_xy():

else if(test==2)

santo.set_r_theta();
santo.conversion(test);

81 return 0;

82}

output

Press | to input certecian point
Press 2 to input polar point
what is your input ? 1

Enter the valueof x &y : 4 5
POLAR FORM :

Scanned with CamScanner

r=6.403124
theta = 51.340073 degree

Chapter 8

Review Questions

8.1: What does inheritance mean in C++?

Ans:The mechanism of deriving a new class from an old one is called inheritance. The old class is
referred to as the base class and the new one is called derived class.

8.2: What are the different forms of inheritance? Give an example for each.

Ans:Different forms of inheritence:

1. Single inheritence : Only one derived class inherited from only one base class is called single
inheritence.

Example: Let A is a base class

and B is a new class derived from A

B]

This is written in program as following:

classA {..........};

class B: PublicA {........ '

2 Multiple inheritence : A class can inherit the attributes of two or more classes. This is known as
multiple inheritence.

Example :

Scanned with CamScanner

Bl

B3

Class D : visibilityB1, visibility. B2, visibility B3

{

(Body of D)

}

* yisibility may be public or private.
3.Multilevel inheritance : It a class is derived from a base class, and another class is derived from

this derived class and so on, then it is called multilevel inheritance.

Example :
ClassA {..... }

— [O)e wle{]

Class B : Public A { ... }:

Class C : Private B{ ...

\-
S B

4 Hierarchical inheritance: It the inheritance follows the hierarchical design of a program, then it
is called hierarchical inheritance.

Example :

Arts

CSE

Student

:

Engineering

|

Medical

EEE

ECE

This design is implemented in program as follows:
Class student { }:// base class,
Class Arts : Public student { }:
Class Medical ; Public student {... . };

Class Engineering : Public student { };
Class CSE : Public Engineering { }:

Scanned with CamScanner

Class EEE : Public Engineering { };
Class ECE : Public Engineering { b

* here all inheritance are considered as public you can private inheritance also. as you wish.

5.Hybrid inheritance: When multi level and multiple inheritances are applied to an inheritance,
then it is called Hybrid inheritance.

Example :

student

test

sports

vy v

result

In program :

Class student {... ... }:

Class test ; public student {...... }:
Class result : public test {...};
Class result : public sports {.......}:

8.3: Describe the syntax of the single inheritance in C++.

Ans:Syntax of single inheritance:
Class Derived name : visibility mode Base_class name

{
Body of derived class

b

* visibility mode may be public or private.
or protected

8.4: We know that a private member of a base class is not inheritable. Is it anyway possible
for the objects of a derived class to access the private members of the base class? If yes, how?
Remember, the base class cannot be modified.

Ans:Yes. It is possible for the objects of derived class to access the private member of the base
class by a member function of base class which is public. The following example explains this :

#include<iostream.h>

class B

{

Scanned with CamScanner

int a; // a is private that can not be inherited.
public:

int get_a();

void set_a();

}:

class D:public B
{
int b;
public:

void display_a();
|

void D :: display_a()
{

cout<<" a = "<<get_a()<<"\n"; // a is accessed by member function get_a().

}

void B :: set_a()
{
a=156271;

}

int B :: get_a()
{

return a;

}

void main()

{
Dd;
d.set_a();
d.display_a();

8.5: How do the properties of the following two derived classes differ?
(a) class D1: private B(// ...);
(b) class D2: public B(//....);

Ans:(a) Private member of B can not be inherited in D1 Protected member of B become private in
D1 public member of B become private in D1.

(b) Private member of B can not be inherited in D2 Protected member of B remains protected in
D2 Public member of B remains public in D2

8.6: When do we use the protected visibility specifier to a class member?

Ans:When we want access a data member by the member function within its class and by the

Scanned with CamScanner

member functions immediately derived from it, then we use visibility modifier protected.

8.7: Describe the syntax of multiple inheritance. When do we use such an inheritance?

Ans: Syntax :

Class D : Visibility B1, Visibility B2,

{
(Body of D)

}

Then we want of combine several feature to a single class then we use multiple inheritance.

8.8: What are the implications of the following two definitions?
(a) class A: public B, public C(//....);
(b) class A: public C, public B(//....);

Ans:Two are same.

8.9: WWhat is a virtual base class?

Ans:Whey multiple paths between a bass class and a derived class are exist then this base class is
virtual base class. A base class can be made as virtual just adding “virtual” keyword before this
base class.

8.10: When do we make a class virtual?

Ans:To avoid the duplication of inherited members due to multiple paths between base and
derived classes we make base class virtual.

8.11: What is an abstract class?

Ans:An abstract class is one that is not used to create objects.

8.12: In what order are the class constructors called when a derived class object is created?

Ans:According to the order of derived class header lines

Scanned with CamScanner

8.13: Class D is derived from class B. The class D does not contain any data members of its
own. Does the class D require constructors? If yes, why?

Ans:D does not require any construct or because a default constructor is always set to class by
default.

8.14: What is containership? How does it differ from inheritance?

Ans:Containership is another word for composition. That is, the HAS-A relationship where A
has-a member that is an object of class B.

Difference : In inheritance the derived class inherits the member data and functions from the base
class and can manipulate base public/protected member data as its own data. By default a
program which constructs a derived class can directly access the public members of the base class
as well. The derived class can be safely down cast to the base class, because the derived is-a”
base class.

Container : a class contains another object as member data. The class which contains the object
cannot access any protected or private members of the contained class(unless the container it was
made a friend in the definition of the contained class).The relationship between the container and
the contained object is “has-a” instead of “i1s-a”

8.15: Describe how an object of a class that contains objects of other classes created?

Ans:By inheriting an object can be created that contains the objects of other class.
Example :

class A
{
int a;
public:
void dosomething();

}:

class B: class A

{
int b;
public:
void donothing();

}:

Now if object of B is created : then if contains:

1. void dosomething ();
2. int b;
3. void donothing ();

Scanned with CamScanner

8.16: State whether the following statements are TRUE or FALSE:
(a) Inheritance helps in making a general class into a more specific class.

(b) Inheritance aids data hiding.

(c) One of the advantages of inheritance is that it provides a conceptual framework.

(d) Inheritance facilitates the creation of class libraries.
(e) Defining a derived class requires some changes in the base class.

(f) A base class is never used to create objects.

(g) It is legal to have an object of one class as a member of another class.

(h) We can prevent the inheritance of all members of the base class by making base class virtual

in the definition of the derived class.

Ans:

(a) TRUE
(b) FALSE
(c) TRUE
(d) TRUE
(e) FALSE
(f) TRUE
(2) TRUE
(h) FALSE

Debugging Exercises
8.1: Identify the error in the following program.

#include <iostream.h>;
class Student |{
char® name;
int rollNumber;
public:
Student() {
name = "AlanKay";;
rolINumber = 1025;
)

void setNumber(int no) {
rollNumber = no;
}
int getRollNumber() {
return rollNumber;
}
};

class AnualTest: Student {
int mark 1, mark2;

Scanned with CamScanner

public:
AnualTest(int ml. int m2)
:mark1(ml), mark2(m2) {
}
int getRollNumber() {

return Student::getRolINumber();

}
}:
void main()

{
AnualTest test1(92 85);

cout<< testl.getRollNumber();

}

Solution: Constructor and Private (data & function) can not be inherited.

8.2: Identify the error in the following program.

#include <iostream.h>;
class A
{
public:
A()
{

cout<< "A";
}
)i

class B: public A
{
public:

B0

{

}

cout<< "B";

)i
class C: public B

{
public:

CO
{

}

cout << "C";

}:

class D

public:

Scanned with CamScanner

DO
{

}

cout << "D";

K
class E: public C, public D
{
public:
EQ)

{
cout<< "D";
}
}:
class F: B, virtual E
{
public:
F()
{
cout<< "F";
}
¥

void main()

{
Ff;
}

Solution: The inheritance can be represented as follows :

F

Here B is virtual, but not E.

8.3: Identify the error in the following program.

#include <iostream.h>:

Scanned with CamScanner

class A

{
}:

int i;

class AB: virtual A

{

):
class AC: A, ABAC
{

1
class ABAC: AB, AC
{

)
void main()

{

int j;

int k;

int 1;

ABAC abac;
cout << "sizeof ABAC:" << sizeof(abac);

}

Solution: The inheritance can be represented as follows:

AB

.

> AC

ABC

Y

Class AC: A, Here there is no identification of ABAC. If we write class ABAC; after #include it

will not show any error massage.

8.4: Find errors in the following program. State reasons.

// Program test
#include <iostream.h>

class X
{ -
private:
int x1;
Protected:

Scanned with CamScanner

int x2;
public:
int x3;

}:

class Y: public X

{
public:
void f()
{
int yl,y2,y3;
yl =x1;
y2 =x2;
y3 =x3;
}
3
class Z: X
{
public:
void f()
{
int z1,z2,73;
zl =x1;
z2 = x2;
z3 =x3;
}
|
main()
{
int m,n,p;
Yy
m=y.xl;
n=y.x2;
p=y.x3;
Zz
m==zxl;
n=zx2;
p=1zx3;

Solution: Here x1 is private, so x1 cannot be inherited.

yl =x1; is not valid
z1 =x1; is not valid
m =y, x1; is not valid
m =z, x1; is not valid

8.5: Debug the following program.

Scanned with CamScanner

// Test program
#include <iostream.h>
class Bl
{
int bl;
public:
void display();
{

}

cout << bl <<"\n";
1

class B2
{
int b2;
public:
void display();
{

}

cout << b2 <<"\n";

)
class D: public B1, public B2
{
//mothing here
b
main()
{
D d;
d.display()
d.Bl:display();
d.B2::display();
)

Programming Exercises

8.1: Assume that a bank maintains two kinds of accounts for customers, one called as
savings and the other as current account. The savings account provides compound interest
and withdrawal facilities but no cheque book facility. The current account provides cheque
book facility but no interest. Current account holders should also maintain a minimum
balance and if the balance falls below this level a service charge is imposed.

Create a class account that stores customer name, account number and type of account.
From this derive the classes cur_acct and sav_acct to make them more specific to their
requirements. Include necessary member functions in order to achieve the following tasks:
(a) Accept the deposit from a customer and update the balance.

(b) Display the balance.

(c) Compute and deposit interest.

(d) Permit withdrawal and update the balance.

(e) Check for the minimum balance, impose penalty, necessary and update the balance.

Scanned with CamScanner

Do not use any constructors. Use member functions to initialize class members.

Solution:

1 #include<iostream.h>

2 #include<stdio.h>

3 #include<string.h>

4 #include<math.h>

5 #define minimum 500

6 #define service_charge 100

7 #definer 0.15

8

9 class account

10 {

11 protected:

12 char name[100];

13 int ac_number;

14 char ac_type[100];

15 public:

16 void creat(char *t);

17 };

18

19 void account::creat(char *t)

20 {

21

22 cout<<" Enter customer name :";
23 gets(name);

24 strepy(ac_type,t);

25 cout<<" Enter account number :";
26 cin>>ac_number;

27 }

28 class cur_acct: public account
29 {

30 private:

31 float balance;

32 public:

33 void deposite(float d);
34 void withdraw(float w);
35 void display():

36)

37 void cur_acct::deposite(float d)
38 |

39 balance=d;

40 }

4]

42 void cur_acct::withdraw(float w)
43 |

44 if(balance<w)

45 cout<<" sorry your balance is less than your withdrawal amount \n";
46 else

Scanned with CamScanner

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97

balance-=w;

if(balance<minimum)
cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n
your account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
press 0 for no \n"<<" what is your option ?";

int test;
cin>>test;
if(test==0)
balance+=w;
}
]
void cur_acct::display()
{
cout<<"\n Now balance = "<<balance<<"\n";
]

class sav_acct:public account
{
float balance;
int d,m,y;
public:
void deposite(float d);
void withdraw(float w);
void display();
void set_date(int a,int b.int ¢){d=a;m=b:y=c:}
void interest();

}:

void sav_acct::deposite(float d)
{
int X,y.z;
cout<<" Enter today's date(i,e day,month, year) : ";
CIN>>X>>Y>>7;
set_date(x,y,z);
balance=d;

void sav_acct::withdraw(float w)

if(balance<w)
cout<<" sorry your balance is less than your withdrawal amount \n";
else

{

balance-=w;
if(balance<minimum)

{

cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n

Scanned with CamScanner

98 your account is discharged by "<<service_charge<<"TK \n"<<" You must store
99 "<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes

100press 0 for no \n"<<" what is your option ?";
101

102 int test;

103 cin>>test;

104 if(test==0)

105 balance+=w;

106 }

107 }

108

109}

110void sav_acct::display()

111}

112 cout<<"\n Now balance = "<<balance;
113}

114void sav_acct::interest()

115]

116 int D[12]={31,28,31,30,31,30,31,31,30,31,30,31};
117 intdl,yl.ml;

118 cout<<" Enter today's date :(i,e day,month,year) ";
119 cin>>d1>>ml>>yl;

120 int iday.fday:

121 iday=d;

122 fday=dl;

123 for(int i=0;i<m1;i++)

124 {

125 fday+=Dli];

126 }

127 for(i=0;i<m;i++)

128 {

129 iday+=DIi];

130 }

131 int tday;
132 tday=fday-iday;

133 float ty;

134 ty=float(tday)/365+y1-y;

135 float intrst;

136

137 intrst=ty*r*balance;

138 cout<<" Interest is : "<<intrst<<"\n";
139 balance+=intrst;

140}

141

142int main()

143{

144 sav_acct santo;

145 santo.creat("savings");

146 float d;

147 cout<<" Enter your deposit amount : ";
148 cin>>d;

Scanned with CamScanner

149 santo.deposite(d);

150 santo.display();
151 int t;
152 cout<<"\n press | to see your interest : \n"
153 <<" press 0 toskip : ";
154
155 cin>>t;
156
157 if(t==1)
158 santo.interest();
159
160 cout<<"\n Enter your withdrawal amount :";
float w;
cin>>w;
santo.withdraw(w);
santo.display();
return (;
}
output

Enter customer name :Rimo

Enter account number ;10617

Enter your deposit amount : 10000

Enter today’s date(i.e day.month_year): 13 7 2010

Now balance = 10000

press | to see your interest :

press O toskip : 1

Enter today’s date :(i.e day,month.year) 15 8 2010

Interest is : 135.61644

Enter your withdrawal amount :500
Now balance = 9635.616211

8.2: Modify the program of exercise 8.1 to include constructors for all three classes.

Solution:

1 #include<iostream.h>

2 #include<stdio.h>

3 #include<string.h>

4 #include<math.h>

5 #define minimum 500

6 #define service_charge 100
7 #definer0.15

8

Scanned with CamScanner

9 class account

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

{

protected:
char name[100];
int ac_number;
char ac_type[100];
public:
account(char *n.char *t,int no);
}5
account::account(char *n,char *t,int no)
{
strepy(name,n);
strepy(ac_type,t):
ac_number=no;

class cur_acct: public account

private:
float balance,d,w;
public:
void withdraw(float ww);
void deposit(float d){ balance=d: }
cur_acct(char *n,char *tint number float dp.float wd):
account(n,t,number)
{
d=dp:
w=wd;
deposit(d);
withdraw(w);

}
void display();
)i

void cur_acct::withdraw(float ww)

{

if(balance<ww)

cout<<" sorry your balance is less than your withdrawal amount \n";

else

{
balance-=ww;
if(balance<minimum)
{

cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n your

account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes

press 0 for no \n"<<" what is your option ?";
int test;

Scanned with CamScanner

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

cin>>test;
if(test==0)
balance+=w;

else

void cur_acct::display()

{
}

class sav_acct:public account

{

cout<<"\n Now balance = "<<balance<<"\n";

float balance;
int d,m,y;
public:
void deposite(float d){balance=d;set_date();)
void withdraw(float w);
void display();
void set_date(){d=12;:m=1;y=2010;}
void interest();
sav_acct(char *n.char *t,int number,float dp,float wd):
account(n.t,number)
{
float d.w:
d=dp;
w=wd;
deposite(d);
interest();
withdraw(w);

}
)i
void sav_acct::withdraw(float w)
{
if(balance<w)
cout<<" sorry your balance is less than your withdrawal amount \n";
else
{
balance-=w:
if(balance<minimum)
{
cout<<"\n your current balance is :"<<balance<<" which is less than"<<minimum<<"\n your
account is discharged by "<<service_charge<<"TK \n"<<" You must store
"<<minimum<<"TK to avoid discharge \n "<<" Do you want to withdraw ? press 1 for yes
press 0 for no \n"<<" what is your option 7";
int test;
cin>>test;
if(test==0)

Scanned with CamScanner

111 balance+=w;

112)

113 else

114 :

115 }

116

117}

118void sav_acct::display()

119{

120 cout<<"\n Now balance = "<<balance;
121}

122void sav_acct::interest()

123]

124 int D[12]={31,28,31,30,31,30,31,31,30,31,30,31};
125 intdl,yl,ml;

126 cout<<" Enter today's date :(i,e day,month,year) ";
127 cin>>d1>>ml>>yl;
128 int iday,fday;

129 iday=d;

130 fday=dl;

131 for(int 1=0;i<ml ;i++)
132 {

133 fday+=Dli];
134 }

135 for(i=0;i<m;i++)

136 {

137 iday+=D[i];
138 }

139 int tday;

140 tday=fday-iday;

14] float ty;

142 ty=float(tday)/365+y1-y:

143 balance=balance®*pow((1+r).ty);

144}

145

146int main()

147

148

149 float d;

150 cout<<" Enter customer name :";

151 char name[100];

152 gets(name);

153 cout<<" Enter account number :";

154 int number;

155 cin>>number;

156 cout<<" Enter your deposit amount : ";
157 cin>>d;

158

159 cout<<" Enter your withdrawal amount :";
160 float w;

161 cin>>w;

Scanned with CamScanner

/fcur_acct s("current”,name,number.d,w);
//s.display();
sav_acct ¢("savings”,name,number,d,w);
c.display();

return (;

}
output
Enter customer name :mehedi
Enter account number : 1457
Enter your deposit amount : 5000
Enter your withdrawal amount :1200

Enter today’s date :(i,e day,month,year) 13 7 2010
Now balance = 4160.875977

8.3: An educational institution wishes to maintain a database of its employees. The database
is divided into a number of classes whose hierarchical relationships are shown in following
figure. The figure also shows the minimum information required for each class. Specify all
classes and define functions to create the database and retrieve individual information as
and when required.

Scanned with CamScanner

Staff

Code
Name
Teacher
Subject 3
Publication typist
speed
regular

|

officer

grade

casual

daily

wages

fig: class relationships (for exercise 8.3)

Solution:

OO0~ O e) D e

—
D — O

[S —
Y L W

17

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff

{

public:
int code;
char name[100];
public:

void set_info(char *n,int ¢)

{
strcpy(name,n);
code=c;

}:

18 class teacher : public staff

Scanned with CamScanner

19 {

20 protected:

21 char sub[100],publication[100];

22 public:

23 void set_details(char *s,char *p)

24 {

25 strepy(sub,s);strepy(publication,p);

26 }

27 void show()

28 {

29 cout<<"name"<<setw(8)<<"code"<<setw(15)<<"subject"<<setw(25)

30 <<"publication"<<endl<<name<<setw(8)<<code<<setw(25)<<sub<<setw(22)<<publication<<endl;
31 }

32 L

33

34 class officer:public staff

35 {

36 char grade[100];

37 public:

38 void set_details(char *g)

39 {

40 strepy(grade,g);

41 }

42

43 void show()

44 {

45 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Category "<<endl
46 <<name<<setw(10)<<code<<setw(15)<<grade<<endl;
47 }

48),

49 class typist: public staff

50 {

51 protected:

52 float speed;

53 public:

54 void set_speed(float s)

55 {

56 speed=s;

57)

58 };

59 class regular:public typist

60 |

61 protected:

62 float wage;

63 public:

64 void set_wage(float w){wage=w:}
65 void show()

66 {

67 cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)

68 <<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
69 <<setw(l5)<<wage<<end];

Scanned with CamScanner

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

)i

}

class causal:public typist

{

float wage;
public:
void set_wage(float w){wage=w;}
void show()

{

cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)
<<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl;

}
}:
int main()
{
teacher t;

t.set_info(" Ataur",420);
t.set_details("programming with c++"," Tata McGraw Hill");

officer o;
o.set_info("Md. Rashed",222);
o.set_details("First class");

regular rt;
rt.set_info("Robiul Awal",333);
rt.set_speed(85.5);
rt.set_wage(15000);

causal ct;

103ct.set_info("Kawser Ahmed",333);
104ct.set_speed(78.9);
105ct.set_wage(10000);

106
107
108
109
110
111
112
113
114
115
116

output

}

cout<<" About teacher: "<<endl;
t.show();

cout<<" About officer:"<<endl;
o.show();

cout<<" About regular typist :"<<endl;
rt.show();

cout<<" About causal typist :"<<end]l;
ct.show();

return 0;

About teacher:

Scanned with CamScanner

name code subject publication

Ataur 420 programming with c++ Tata McGraw Hill
About officer:

name code Category

Md. Rashed 222 First class

About regular typist :

name code speed wage

Robiul Awal 333 85.5 15000

About causal typist :
name code speed wage

Kawser Ahmed 333 78.900002 10000

8.4: The database created in exercise 8.3 does not include educational information of the
staff. It has been decided to add this information to teachers and officers (and not for typists)
which will help management in decision making with regard to training, promotions etc.
Add another data class called education that holds two pieces of educational information
namely highest qualification in general education and highest professional qualification.
This class should be inherited by the classes teacher and officer. Modify the program of
exercise 8.19 to incorporate these additions.

Solution:

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{
protected:

int code;

char name[100];
10 public:
11 void set_info(char *n,int ¢)
12 {
13 strcpy(name,n);
14 code=c;

OO0~ Oy e) N e

Scanned with CamScanner

15 }

16 };

17 class education:public staff

18 {

19 protected:

20 char quali[100];

21 public:

22 void set_qualification(char *q){strcpy(quali,q);}

23);

24

25 class teacher : public education

26 {

27 protected:

28 char sub[100],publication[100];

29 public:

30 void set_details(char *s,char *p)

31 {

32 strepy(sub,s);strepy(publication,p);

33 }

34 void show()

35 {

36 cout<<" name "<<setw(8)<<"code"<<setw(15)
37 <<"subject"<<setw(22)<<"publication"
38 <<setw(25)<<"qualification"<<end]l

39 <<name<<setw(8)<<code<<setw(25)
40 <<sub<<setw(18)<<publication<<setw(25)<<quali<<endl;
41 }

42);

43

44 class officer:public education

45 {

46 char grade[100];

47 public:

48 void set_details(char *g)

49 {

50 strecpy(grade,g);

51

52 }

53

54 void show()

55 {

56 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Catagory "
57 <<setw(22)<<"Qualification"<<endl<<name<<setw(10)
58 <<code<<setw(15)<<grade<<setw(25)<<quali<<endl<<endl;
59 }

60 }:

61

62 class typist: public staff

63 {

64 protected:

65 float speed;

Scanned with CamScanner

66 public:

67 void set_speed(float s)

68 {

69 speed=s;

70)

71)

72 class regular:public typist

73 |

74 protected:

75 float wage;

76 public:

77 void set_wage(float w){wage=w;}

78 void show()

79 {

80 cout<<" name "<<setw(16)<<"code"<<setw(15)<<"speed"
81 <<setw(15)<<"wage"<<endl<<name<<setw(l0)<<code
82 <<setw(15)<<speed<<setw(15)<<wage<<endl<<endl;
83 |

84 }|;

85 class causal:public typist

86 |

87 float wage;

88 public:

89 void set_wage(float w) { wage=w:}

90 void show()

91 {

92 cout<<" name "<<setw(16)<<"code"<<setw(15)<<"speed"
93 <<setw(15)<<"wage"<<endl<<name<<setw(10)<<code
94 <<setw(15)<<speed<<setw(l5)<<wage<<endl<<endl;
95 |

96

97)

98

99 int main()

100

101

102 teacher t; t.set_info("Ataur",420);
103t.set_details("programming with c++"," Tata McGraw Hill");
104t.set_qualification("PHD from programming ");

105

106 officer o;

107

108 o.set_info("Md. Rashed",222);

109 o.set_details("First class");

110 o.set_qualification("2 years experienced");
111

112 regular rt;

113 rt.set_info("Robiul Awal",333);

114rt.set_speed(85.5);
115rt.set_wage(15000);
116

Scanned with CamScanner

117 causal ct;

118 ct.set_info("Kawser Ahmed",333):
119 ct.set_speed(78.9);
120 ct.set_wage(10000);

121

122 cout<<" About teacher: "<<endl;

123 t.show();
124

125 cout<<" About officer:"<<endl;

126 o.show();
127

128 cout<<" About regular typist :"<<endl;
129 rt.show();
130 cout<<" About causal typist :"<<end]l;

131 ct.show();
132

133 return 0;
134)

output

About teacher:

name code subject

publication qualification

Ataur 420 programming with c++ Tata McGraw Hill PHD from programming-

About officer:

name code

Md. Rashed 222

About regular typist :

name code

Robiul Awal 333

About causal typist :

name code

Kawser 333

Catagory

First class

speed

85.5

speed

78.900002

Qualification

2 years experienced

wage

15000

wage

10000

8.5: Consider a class network of the following figure. The class master derives information
from both account and admin classes which in turn derives information from the class
person. Define all the four classes and write a program to create, update and display the
information contained in master objects.

Scanned with CamScanner

Person

Name
Code
Account
Pay
Person
Name
Code
Experience
Pay
Solution:
1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<string.h>
4
5 class staff
6
7 protected:
8 int code;
9 char name[100];
10 public:
11 void set_info(char *n,int ¢)
12 {
13 strepy(name,n);
14 code=c;
15)
16 };
17
18 class education:public staff
19 {
20 protected:
21 char quali[100];
22 public:
23 void set_qualification(char *q){strcpy(quali.q);}
24 };
25

admin

jxper'ience

Scanned with CamScanner

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76

class teacher : public education

{

protected:

char sub[100],publication[100];
public:

void set_details(char *s,char *p)

{
strepy(sub,s);strepy(publication,p);

void show()

{

cout<<"name"<<setw(8)<<"code"<<setw(15)<<"subject"<<setw(22)
<<"publication"<<setw(25)<<"qualification"<<endl<<name<<setw(8)
<<code<<setw(25)<<sub<<setw(18)<<publication<<setw(23)<<quail

<<endl;
}
}:
class officer:public education
{
char grade[100];
public:
void set_details(char *g)
{
strepy(grade,g);
}
void show()
{
cout<<"name"<<setw(15)<<"code"<<setw(15)<<"Catagory"
<<setw(22)<<"Qualification"<<endl<<name<<setw(10)
<<code<<setw(15)<<grade<<setw(25)<<quali<<endl<<endl;
}
}:

class typist: public staff

{

protected:
float speed;
public:
void set_speed(float s)
{
speed=s;
}

class regular:public typist

protected:
float wage;

Scanned with CamScanner

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

public:
void set_wage(float w){wage=w:}
void show()

{

cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)

<<"wage"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl<<endl;
}

}:
class causal:public typist
{

float wage;

public:

void set_wage(float w){wage=w;)

void show()

{

cout<<"name"<<setw(16)<<"code"<<setw(15)<<"speed"<<setw(15)

<<"wage'"<<endl<<name<<setw(10)<<code<<setw(15)<<speed
<<setw(15)<<wage<<endl<<endl;

)
):
int main()
{
teacher t;
t.set_info(" Ataur",420):
t.set_details("programming with c++"," Tata McGraw Hill");
t.set_qualification("PHD from programming ");
officer o;
o.set_info("Md. Rashed",222);
o.set_details("First class");
o.set_qualification("2 years experienced");
regular rt;
rt.set_info("Robiul Awal",333);
rt.set_speed(85.5);
rt.set_wage(15000);
causal ct;
ct.set_info("Kawser Ahmed",333);
ct.set_speed(78.9);
ct.set_wage(10000);
cout<<" About teacher: "<<endl;
t.show();
cout<<" About officer:"<<endl;
o.show();
cout<<" About regular typist :"<<endl;
rt.show();
cout<<" About causal typist :"<<endl,
ct.show();

Scanned with CamScanner

128

129 return 0;

130}

output

name code Experience payment
Hasibul 111 3 years 1500tk

8.6: In exercise 8.3 the classes teacher, officer, and typist are derived from the class staff. As
we know we can use container classes in place of inheritance in some situations. Redesign
the program of exercise 8.3 such that the classes teacher, officer and typist contain the
ohjects of staff.

Solution:

#include<iostream.h>
#include<iomanip.h>
#include<string.h>

class staff
{

public:

int code;

char name[100];
10 public:
11 void set_info(char *n,int c)
12 {
13 strcpy(name,n);
14 code=c;
15 }
16};
17
18class teacher : public staff
19{
20 protected:
21 char sub[100],publication[100];

O 00~ O e) N -

22 public:

23 void set_details(char *s,char *p)

24 {

25 strepy(sub,s);strepy(publication,p);

26)

27 void show()

28 {

29 cout<<"name"<<setw(8)<<"code"<<setw(15)<<"subject"<<setw(25)

30<<"publication"<<endl<<name<<setw(8)<<code<<setw(25)<<sub

Scanned with CamScanner

31<<setw(22)<<publication<<endl;

32 }

33});

34

35 class officer:public staff

36{

37 char grade[100];

38 public:

39 void set_details(char *g)

40 {

4] strepy(grade,g);

42 }

43 void show()

44 {

45 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"Catagory "<<endl
46 <<name<<setw(10)<<code<<setw(15)<<grade<<endl;
47 }

48};

49

50class typist: public staff

51§

52 protected:

53 float speed;

54 public:

55 void set_speed(float s)

56 {

57 speed=s:

58 }

59 void show()

60 {

61 cout<<" name "<<setw(15)<<"code"<<setw(15)<<"speed"<<endl
62 <<name<<setw(10)<<code<<setw(15)<<speed<<endl<<endl;
63 }

64};

65

66 int main()

67|

68

69 teacher t;

70 t.set_info(" Ataur”.420);

71 t.set_details("programming with c++"," Tata McGraw Hill");
72

73 officer o;

74 o.set_info("Md. Rashed",222);

75 o.set_details("First class");

76

77 typist tp;

78 tp.set_info("Robiul Awal".333);

79 tp.set_speed(85.5);

80

81 cout<<" About teacher: "<<endl;

Scanned with CamScanner

82 t.show();

83 cout<<" About officer:"<<endl;
84 o.show();

85 cout<<" About typist :"<<endl;
86 tp.show();

87 return 0;
88}
output

About teacher:
name code subject publication

Ataur 420 programming with c++ Tata McGraw Hill

About officer:

name code Catagory
Md. Rashed 222 First class
About typist :

name code speed
Robiul Awal 333 85.5

8.7: We have learned that OOP is well suited for designing simulation programs. Using the
techniques and tricks learned so far, design a program that would simulate a simple real-
world system familiar to you

Solution:

#include<iostream.h>
#include<stdio.h>
#include<string.h>
#include<iomanip.h>
#include<conio.h>

char *sub[10]={"Bangla Ist paper","Bangla 2nd paper","English 1st paper",
"English 2nd paper","Mathematics","Religion”,
"Physics”,"Chemistry","Sociology","Higher Mathematics"};
0
I class student_info
12 {

1
2
3
4
5
6
i
8
9
1
1

Scanned with CamScanner

13
14
15
16
17
18

19 };

20

public:
char name[40];
char roll[20];
public:
void set_info();

21 void student_info::set_info()

22 {
23
24
25
26
27 }
28
29
30 |
31
32
33
34
35
36

37);

38

cout<<"Enter student name : ";
gets(name);

cout<<"Enter roll: ";
gets(roll);

class subject :public student_info

public:
float mark[10];

public:
void set_mark();

39 void subject::set_mark()

40 |
41
42
43

45
46
47
48)
49
50 {
51
52
53
54
55

56):

57
58 |
59
60
61
62
63

cout<<" marks of :\n";
for(int i=0;i<10;i++)
{
cout<<sub[i]<<"=7";
cin>>mark[i];

class conversion :public subject

float gpa[10];
char grade[20][20];
public:
void convert_to_gpa();
void show();

void conversion::convert_to_gpa()

for(int i=0;1<10;1++)
{
if(mark[i]>=80)
{
gpali]=5.00;

Scanned with CamScanner

64 strepy(grade[i],"A+");

65 }

66 else if(mark[i]>=70 && mark[i]<80)

67 {

68 gpali]=4.00;

69 strepy(gradel[i],"A");

70 }

71 else if(mark([i]>=60 && mark[i]<70)
72 {

73 gpali]=3.50;

74 strepy(grade[i]," A-");

75 }

76 else if(mark[i]>=50 && mark[i]<60)

77 {

78 gpali]=3.00;

79 strepy(grade[i],"B");

80 }

81 else if(mark[i]>=40 && mark[i]<50)
82 {

83 gpali]=2.00;

84 strepy(gradeli],"C");

85 }

86 else if(mark[i]>=33 && mark[i]<40)
87 {

88 gpali]=1.00;

89 strepy(gradeli],"D");

90 }

91 else

92

93 gpali]=0.00;

94 strepy(gradeli],"Fail");

95 }

96 }

97 |}

98

99 void conversion::show()

100{

101 cout<<" result of \n";

102 cout<<'"name :"<<name<<"\n";

103 cout<<"Roll : "<<roll<<"\n";

104 cout<<setw(25)<<"Subject"<<setw(17)<<"Marks"
105 <<setw(14)<<"GPA"<<setw(12)<<"Grade \n";
106 for(int i=0;i<10;i++)

107 {

108 cout<<setw(25)<<sub[i]<<setw(15)<<mark][i]
109 <<setw(15)<<gpali]<<setw(10)<<grade[i]<<"\n";
110 }

111}

112int main()
113]

114 clrscr();

Scanned with CamScanner

115 conversion A;

116 A.set_info();

117 A.set_mark();

118 A convert_to_gpal();

119 A.show();
120 getch();
121 return 0
122}

output

Enter student name : santo
Enter roll: 156271

marks of :

Bangla Ist paper =774
Bangla 2nd paper = 7 87
English 1st paper = ? 45
English 2nd paper = ? 56
Mathematics = 7 87
Religion = 7 59

Physics =775

Chemistry = 7 65
Sociology = 7 39

Higher Mathematics = ? 86
result of

name :santo

Roll : 156271

Subject Marks GPA
Bangla 1st paper 74 4
Bangla 2nd paper 87 5

Grade

A+

Scanned with CamScanner

English 1st paper 45 2 C

English 2nd paper 56 3 B
Mathematics 87 5 A+
Religion 59 3 B
Physics 75 - A
Chemistry 65 35 A-
Sociology 39 1 D
Higher Mathematics 86 5 A+
Chapter 9

Review Questions
9.1: What does polymorphism mean in C++ language?

Ans:In short, polymorphism means one thing with several district forms.

—In details, using operators or functions in different ways, depending on what they are
Operating on, is called polymorphism.

9.2: How is polymorphism achieved at (a) compile time, and (b) run time?

Ans:Polymorphism can be achieved at compile time by early binding. Early binding means an
object is bound to its function call at compile time.

And we can achieve run time polymorphism by a mechanism known as virtual function.

9.3: Discuss the different ways by which we can access public member functions of an
object.

Ans:We can access public member functions of an object by
(i) Object name and dot membership operator.
(i1) Pointer to object and function name.

9.4: Explain, with an example, how you would create space for an array of objects using
pointers.

Scanned with CamScanner

Ans:We can also create an array of objects using pointers. For example, the statement
item *ptr = new item [10]; // array of 10 objects.
creates memory space for an array of 10 objects of item.

9.5: What does this pointer point to?

Ans:‘this’ pointer point to invoking object.

9.6: What are the applications of this pointer?

Ans:One important application of the pointer this is to return the object it points to. For example,
the statement.

return * this;
inside a member function will return the object that invoked the function.

9.7: What is a virtual junction?

Ans:When we use the same function name in both the base and derived classes the function in the
base class is declared as virtual using the keyword virtual preceding its normal declaration.

9.8: Why do we need virtual functions?

Ans:It we need same function name at base class and derived class then, we need virtual function.

9.9: When do we make a virtual function “pure”? What are the implications of making a
function a pure virtual function?

Ans:When a function is defined as empty, then this function is called do nothing function.
The implications of making a function a pure virtual function is to achieve run time
polymorphism.

9.10: State which of the following statements are TRUE or FALSE.

(a) Virtual functions are used to create pointers to base classes.

(b) Virtual functions allow us to use the same junction call to invoke member functions of objects
of different classes.

Scanned with CamScanner

(c) A pointer to a base class cannot be made to point to objects of derived class.

(d) this pointer points to the object that is currently used to invoke a function.

(e) this pointer can be used like any other pointer to access the members of the object it points to.
(f) this pointer can be made to point to any object by assigning the address of the object.

(g) Pure virtual functions force the programmer to redefine the virtual function inside the derived

classes.

Ans:

(a) TRUE
(b) TRUE
(c) FALSE
(d) TRUE
(e) TRUE
(f) TRUE
(g) TRUE

Debugging Exercises
9.1: Identify the error in the following program.

#include <iostream.h>;
class Info

{

char* name;

int Number;
public:

void getInfo()

{
cout << "Info::getInfo";

getName();
}

void getName()
{

}

cout << "Info::getName";
B

class Name: public Info
{

char *name;
public:
void getName()

{
}

cout << "Name::getName";

Scanned with CamScanner

void main()

{

Info *P;
Name n;
P=n;
p->getinfo();

Solution: Here P=n will replace with P=&n in the main() function. Because P is a pointer.

9.2: Identify the error in the following program.

#include <iostream.h>;
class Person

{
int age;
public:
Person()
{
}

}:

Person(int age)
{
this.age = age;
}
Person& operator < (Person &p)

{
return age < p.age? p: *this;
}
int getAge()
{
return age;

}

void main()

{

Person P1 (15);

Person P2 (11);

Person P3;

//if P1 is less than P2

P3 = Pl < P2; Pl.lessthan(P2)
cout << P3.getAge();

Scanned with CamScanner

Solution: The function

person (int age)

{
}

this.age = age;

should write like as...

person (int age)
{
—this > age = age;

}

9.3: Identify the error in the following program.

#include <iostream.h>;
class Human

{

public:
Human()
{
}

virtual -Human()

{
}

cout << "Human::-Human";

}:
class Student: public Human
{
public:

Student()

{

}

-Student()

{

cout << "Student::-Student()";

}

}:

void main()
{

Human *H = new Student();
delete H:

Scanned with CamScanner

Solution: Here we cannot write Human *H = new student(); in the main() function because base
class’s member includes in derived class’s object so we should write this as follow

student *H = new Student();

9.4: Correct the errors in the following program.

class Human
{
private:
int m;
public:
void getdata()

{

cout << " Enter number:";

cin >> m;
}

}:

main()

{
test T
T->getdata();
T->display();

test *p;

p = new test;
p.getdata();
(*p).display();

Solution: Here T->getdata replace with T.getdata and T->display replace with T.display in the

main() function. Because in this program T is object to pointer.

9.5: Debug and run the following program. What will be the output?

#include<iostream.h>
class A
{
protected:
int a,b;
public:
A(intx =0, int y)
{

Scanned with CamScanner

a=x;
b=y;

}
virtual void print ();
k
class B: public A
{
private:
float p.q;
public:
B(intm, int n, float u, float v)

{

p=u
q=vi
)
B {(p=p=0:}
void input(float u, float v);
virtual void print(loat);
)
void A::print(void)
{

cout << A values: << a<<""<<b<<"\n";

}
void B:print(float)

nn ",

cout << B values: << u<<""<< v << "\n";

ioid B::input(float x, float y)
{
p=x
q=y:
}

main()

{
A al(10,20), *ptr;
B bl;
bl.input(7.5,3.142);

ptr = &al;
ptr->print();

ptr = &bl;
ptr->print();

Programming Exercises

Scanned with CamScanner

9.1: Create a base class called shape. Use this class to store two double type values that
could be used to compute the area of figures. Derive two specific classes called triangle and
rectangle from the base shape. Add to the base class, a member function get_data() to
initialize base class data members and another member function display_area() to compute
and display the area of figures. Make display_area() as a virtual function and redefine this
function in the derived classes to suit their requirements,

Using these three classes, design a program that will accept dimensions of a triangle or a
rectangle interactively, and display the area.

Remember the two values given as input will be treated as lengths of two sides in the case of
rectangles and as base and height in the case of triangles, and used as follows:

Area of rectangle = x *y

Areaof triangle =12 * x * y

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 class shape

4 {

5 public:

6 double x,y;

7 public:

8 void get_data()

9 {

10 Cin>>X>>y;

11

12 }

13 double get_x(){return x;}

14 double get_y(){return y;}
15 virtual void display_area(){ }
16};

17

18class triangle:public shape

19{

20 public:

21 void display_area()

22 {

23 double a;

24 a=(x*y)/2;

25 cout<<" Area of triangle = "<<a<<endl;
26

27}

28);

29class rectangle:public shape

304

Scanned with CamScanner

31 public:
32 void display_area()

33 {

34 double a;

35 a=x*y;

36 cout<<" Area of rectangle = "<<a<<endl;
37 }

38);

39 int main()

40{

41

42 shape *s[2];

43 triangle t;

44 s[0]=&t;

45 rectangle r;

46 s[1]=&r;

47 cout<<" Enter the value of x & y for triangle: ";
48 s[0]->get_data();

49 cout<<" Enter the value of x & y for rectangle: ";
50 s[1]->get_data();

51 s[0]->display_area();

52 s[1]->display_area();

53 return 0;

54)

output

Enter the value of x & y for triangle: 12 26
Enter the value of x & y for rectangle: 24 14
Area of triangle = 156

Area of rectangle = 336

9.2: Extend the above program to display the area of circles. This requires addition of a
new derived class ‘circle’ that computes the area of a circle. Remember, for a circle we need
only one value, its radius, but the get_data() function in base class requires two values to be
passed.(Hint: Make the second argument of get_data() function as a default one with zero
value.)

Solution:

I #include<iostream.h>
2 #include<iomanip.h>
3 #define pi 3.1416

4 class shape

Scanned with CamScanner

5 ¢

6 public:

7 double x,y;

8 public:

9 void get_data(double a,double b)
10 {

11 X=a,

12 y=b:

13

14)

15 double get_x(){return x; }

16 double get_y(){return y;}
17 virtual void display_area(){ }
18};

19

20class triangle:public shape

214

22 public:

23 void display_area()

24 {

25 double a;

26 a=(x*y)/2;

27 cout<<" Area of triangle = "<<a<<endl;
28

29 }

30};

31

32 class rectangle:public shape
33§

34 public:

35 void display_area()

36 {

37 double a;

38 a=x*y;

39 cout<<" Area of rectangle = "<<a<<endl;
40 }

41}

42class circle:public shape

43

44 public:

45 void display_area()

46 {

47 double a;

48 a=pi*x*x;

49 cout<<" Area of circle = "<<a<<endl;
50 }

51}

52

53int main()

544

55

Scanned with CamScanner

56 shape *s[3];

57

58 triangle t;

59 s[0]=é&t;

60

61 rectangle r;

62 s[1]=&r;

63

64 circle c;

65 s[2]=é&c;

66 double x.y;

67 cout<<" Enter the value of x & y for triangle: ";
68 cin>>x>>y;

69 s[0]->get_data(x,y);

70 cout<<" Enter the value of x & y for rectangle: ";
71 cin>>x>>y;

72 s[1]->get_data(x,y):

73 cout<<" Enter the radius of circle : ";
74 double rd;

75 cin>>rd;

76 s[2]->get_data(rd,0);

77 cout<<endl<<endl;

78 s[0]->display_area();

79 s[1]->display_area();

80 s[2]->display_area();

81

82 return (;

83}

output

Enter the value of x & y for triangle: 10 24
Enter the value of x & y for rectangle: 14 23

Enter the radius of circle : 12

Area of triangle = 120
Area of rectangle = 322

Area of circle = 452.3904

9.3: Run the program above with the following modifications:
(a) Remove the definition of display_area() from one of the derived
classes.

Scanned with CamScanner

(b) In addition to the above change, declare the display_area() as
virtual in the base class shape.
Comment on the output in each case.

Solution:

#include<iostream.h>
#include<iomanip.h>
#define pi 3.1416
class shape
{

public:

double x,y;

public:

void get_data(double a,double b)
10 |
11 X=a;
12 y=b;
13
14}
15double get_x(){return x;}
16double get_y(){return y;}
17 virtual void display_area(){)

L=~ B NV, R S S R BS R

18};

19class triangle:public shape
20{

21 public:

22 void display_area()

23 {

24 double a;
25 a=(x*y)/2;

26 cout<<" Area of triangle = "<<a<<endl;
27 }

28);

29class rectangle:public shape
301

31 public:

32 void display_area()

33 {

34 double a;

35 a=x*y;

36 cout<<" Area of rectangle = "<<a<<endl;
37)

38);

39class circle:public shape
40{

41 public:

42 wvoid display_area()

43 |

44 double a;

Scanned with CamScanner

45 a=pi*Fx*x;
46 cout<<" Area of circle = "<<a<<endl;
47 |}

48);

49

50int main()

51

52

53 shape *s[3]:
54 triangle t;

55 s[0]=é&t;

56

57 rectangler;

58 s[l]=&r;

59 circle c;

60 s[2]=&c;

61 double x,y;

62 cout<<" Enter the value of x & y for triangle: ";

63 cin>>xX>>Y;
64 s[0]->get_data(x.y);

65 cout<<" Enter the value of x & y for rectangle: ";

66 cin>>x>>Yy,

67 s[1]->get_data(x.y):
68 cout<<" Enter the radius of circle : ";
69 double rd;

70 cin>>rd;

71 s[2]->get_data(rd,0);
72 cout<<endl<<endl;
73 s[0]->display_area();
74 s[1]->display_area();
75 s[2]->display_area();
76

77 return 0;

78}

output
Enter the value of x & y for triangle: 28 32
Enter the value of x & y for rectangle: 25 36

Enter the radius of circle : 20

Area of triangle = 448
Area of rectangle = 900

Area of circle = 1256.64

Scanned with CamScanner

Chapter 10

Review Questions

10.1:What is a stream?

Ans: The I/0 system in C++ is designed to work with a wide variety of devices including
terminals, disks and tape drives. Although each device is very different, the I/O system supplies
an interface to the programmer that is independent of the actual device being accessed. This
interface is known as stream.

10.2: Describe briefly the features of I/0 system supported by C++.

Ans: See table 10.1, page 293 of Balagurusamy.

10.3: How do the I/O facilities in C++ differ from that in C?

Ans:We can design our own manipulators for certain special purposes in C++ but not in C.

Example :

1Ostream & unit (ostream & output)

2 {

3 output << “TK™;

+ return output;

5 1}

6 The statement

7 cout << 100 << unit;
8 will print

9 100 Tk.

10.4: Why are the words such as cin and cout not considered as keywords?

Ans: cin and cout are related to iostream object, that’s why we must include iostream header file
in our program to use cin and cout.

Hence cin and cout are considered as iostream objects, not keywords.

10.5: How is cout able to display various types of data without any special instructions?

Scanned with CamScanner

Ans:The biggest single advantage to the stream methods is: they are type-safe. If you change a
variable’s type, the sub sequent stream operations using that variable will either automatically
accommodate the change, or will indicate an incompatibility at compile time. Thus cout is able to
display various types of data without any special instructions.

10.6: Why is it necessary to include the file iostream in all our programs?

Ans:Because any program has input or output statements and without iostream header file we can
not use input or output statements, that’s why it is necessary to include the file iostream in all our
programs.

10.7: Discuss the various forms of get() function supported by the input stream. How are
they used?

Ans:There are two types of get () functions. We can use both get(char®) and get(void) prototype
to fetch a character including the blank space.

10.8: How do the following two statements differ in operation?
cin >> ¢;
cin.get(c);

Ans:cin>>c will read a character but it will skip the white space and new line character.
cin.get (c¢); will read a character including white space and newline character.

10.9: Both cin and getline() function can be used for reading a string. Comment.

Ans: cin reads a string and stops when a space or newline is encountered.
getline () function reads a whole line of text that ends with a newline character.

10.10:Discuss the implications of size parameter in the following statement:
cout.write(line, size);

Ans: cout.write (line, size)
The first argument line represents the name of the string to be displayed and the secon d argument
size indicates the number of characters to display.

10.11:What does the following statement do?
cout.write(s1,m).write(s2,n);

Scanned with CamScanner

Ans: The statement
cout.write(s1,m).write (s2.,n);

is equivalent to the following two statements;

cout.write(s1,m);
cout.write(s2,n);

So, cout.write (s1,m).write (s2,n); will print two string s1 and s2

10.12: What role does the iomanip file play?

Ans: The header file iomanip provides a set of functions called manipulators which can be used to

manipulate the output formats.

10.13: What is the role of file() function? When do we use this function?

Ans: fill () is known as filling and padding function. The unused positions of the field are filled
with white spaces, by default. We can use the fill () function to fill the unused positions by any

desired character.

General form :
cout.fill (ch);
Example :
cout fill (**7);

10.14: Discuss the syntax of set() function.

Ans: syntax of set function:

cout.setf (argl, arg2);

here argl is one of the formatting flags
and arg?2 is bit field.

Example:
cout.setf (ios::left, ios :: adjust field);

10.15: What is the basic difference between manipulators and ioa member functions in

implementation? Give examples.

Ans: We can design our manipulator using manipulator function, which can not be done by ios

member functions

Scanned with CamScanner

Example :

lostream & show (ostream & output)
2{

3output.setf (ios :: showpoint);
4output.setf(ios :: showpos);

Soutput << setw(10);

6return output;

7}

This function defines a manipulator called show that turns on the flags showpoint and showpos
declared in the class ios and sets the field width to 10.

10.16: State whether the following statements are TRUE or FALSE.

(a) A C++ stream is a file.

(b) C++ never truncates data.

(c) The main advantage of width() junction is that we can use one width specification for more
than one items.

(d) The get(void) function provides a single-character input that does not skip over the white
spaces.

(e) The header file iomanip can be used in place of iostream.

(f) We cannot use both the C 110 functions and C++ 110 functions in the same program.

(g) A programmer can define a manipulator that could represent a set of format functions.

Ans:

(a) TRUE
(b) FALSE
(c) FALSE
(d) TRUE
(e) TRUE
(f) FALSE
(2) TRUE

Debugging Exercises

10.1:Sorry this question is missed. We will try to give this question with solution very soon.
Stay with us

10.2: Will the statement cout.setf(ios::right) work or not?

#include <iostream.h>
void main()
{

cout.width(5);

cout << "99" << endl;

I S S

Scanned with CamScanner

6

7 cout.setf(ios::left);

8 cout.width(5);

9 cout << "99" << endl;

11 cout.setf(ios::right);
12 cout << "99" << endl;

Solution: cout.setf(ios :: right) will not work because width() function was not invoked before
cout.setf(ios :: right)

10.3: State errors, if any, in the following statements.

(a) cout << (void*) amount; (b) cout << put ("John") ; (c) cout << width(); (d) int p =
cout.width(10); (e) cout.width(10).precision(3); (f) cout.setf(ios::scientific,ios::left); (g) ch =
cin.get(); (h) cin.get().get(); (i) cin.get(c).get(): (j) cout << setw(5) << setprecision(2); (k) cout <<
resetiosflags(ios::left lios::showpos);

Solution:

(a) missing

(b) put () a member function of ostream class. It is used to output a character. Hence it does not
return any value; so cout<<(“John”); is not valid. Correction :

cout.put (“John’);

(c) width () function does not return any value. So cout <Correction : cout.width ();

(e) cout.width (10) precision (3); must be written separately
cout.width (10);
cout.preasion (3);

(f) If you want to see output as scientfic format you can acheive this as follow:
cout.setf (ios :: scientific, ios :: floatfield);

If you want to see output at left field you can achieve this as flows:
cout.setf (ios :: left, ios :: adjustfield);

(g) No error

(h) cannot be concatenated;

Correction :
cin.get ()
cin.get ()

(i) No error
(j) No error
(k) No error

Scanned with CamScanner

Programming Exercises

10.1: Write a program to read a list containing item name, item code, and cost interactively

and produce a three column output as shown below.

Name Code Cost
Turbo C++ 1001 250.95
C primer 905 95.70

digits. Trailing zeros are shown.

Solution:

1 #include<iostream.h>

2 #include<iomanip.h>

3 #include<string.h>

4 class item

54

6 char name[40];

7 int code;

8 float cost;

9 public:

10 void get_data(char *n,int c.float co)
11 {

12 strepy(name,n);

13 code=c;

14 cost=co:

15]

16 void display();

17

18 };

19

20void item:: display()

21

22 cout.precision(2);

23 cout.setf(ios::fixed,ios::floatfield);
24 cout.setf(ios::showpoint);

25 cout.setf(ios::left,io0s::adjustfield);
26 cout<<setw(40)<<name<<code;
27 cout.setf(ios::right,ios::adjustfield);
28 cout<<setw(15)<<cost<<endl;

29 }

30

Scanned with CamScanner

31 int main()

32

33 item a[5];

34 a[0].get_data("Tarbo C++",1001,250.95);

35 a[1].get_data("C primer",905,95.7);

36 a[2].get_data("algorithm",1111,120.5);

37 a[3].get_data("principle of electronics”,2220,150.85);
38 a[4].get_data("solution of balagurusamy",6666,145.00);
39 cout<<setw(10)<<"name"<<setw(34)<<"code"<<setw(15)<<"cost"<<endl;
40 for(int i=0:;1<60;i++)

41 cout<<"-";

42 cout<<endl;

43 for(i=0;1<5:1++)
44 a[1].display();

45 return 0;

46}

output

name code cost
Tarbo C++ 1001 250.95
C Primer 905 95.70
algorithm 1111 120.50
Principle of electronics 2220 150.85
Solution of balaguruswamy 6666 145.00

10.2: Modify the above program to fill the unused spaces with hyphens.

Solution:

1 #include<iostream.h>
2 #include<iomanip.h>
3 #include<string.h>

4 class item

54

6 char name[40];
7 int code;

8 float cost;

9 public:

1

0 void get_data(char *n,int c.float co)

Scanned with CamScanner

11 {

12 strcpy(name,n);

13 code=c;

14 cost=co;

15)

16 void display();

17

18};

19void item:: display()

20{

21

22 cout.precision(2);

23 cout.fill('-"):

24 cout.setf(ios::fixed,10s::floatfield);
25 cout.setf(ios::showpoint);

26 cout.setf(ios::left,ios::adjustfield);
27 cout<<setw(40)<<name<<code;
28 cout.setf(ios::right,ios::adjustfield);
29 cout<<setw(15)<<cost<<endl;
30}

31

32 int main()

33|

34 item a[5];

35 a[0].get_data("Tarbo C++",1001,250.95);

36 a[1].get_data("C primer",905,95.7);

37 a[2].get_data("algorithm",1111,120.5);

38 a[3].get_data("principle of electronics",2220,150.85);
39 a[4].get_data("solution of balagurusamy",6666,145.00);

40 cout<<setw(10)<<"name"<<setw(34)<<"code"<<setw(15)<<"cost"<<endl;
41 for(int 1=0;1<60;1++)

42 cout<<"-";

43 cout<<endl;

44 for(i=0:1<5:1++)

45 a[i].display();

46 return 0;

47)

output

name code cost
Tarbo C++ 1001 250.95
C Primer 905 95.70
algorithm 1111 120.50

Scanned with CamScanner

Principle of electronics 2220 150.85

Solution of balaguruswamy—6666—— 145.00

10.3: Write a program which reads a text from the keyboard and displays the following

information on the screen in two columns:
(a) Number of lines

(b) Number of words

(c) Number of characters

Strings should be left-justified and numbers should be right-justified in a suitable field width.

Solution:

1 #include<iostream.h>

2 #include<iomanip.h>

3 #include<string.h>

4 #include<stdio.h>

5

6 int main()

71

8 char line[1000];

9 char ch;

10 int c;

11 int word, lines,chr;

12 word=0;

13 lines=0;

14 chr=0;

15 int end=0;

16 cout<<" Enter text : \n";
17 while(end==0)

18 {

19 c=0;

20 while((ch=getchar())!="n")
21 linel=ch;

22 linel1="0"

23 if(line[0]=="0")

24 break;

25 else

26 {

27 word++;
28 for(int i=0:line[1]!="0"1++)
29

30 word++;
31 }

32 lines++;

33 chr+=strlen(line);

34 }

if(line[i]==""|| line[i]=="t || line[i]=="n")

Scanned with CamScanner

35

36 cout.setf(ios::left,ios::adjustfield);

37 cout<<setw(25)<<"Number of lines"<<setw(25)

38 <<"Number of words "<<"Number of characters "<<endl,;

39 cout.setf(ios::right,ios::adjustfield);

40 cout<<setw(10)<<lines<<setw(24)<<word<<setw(25)<<chr<<endl<<endl;
41 return 0;

42)

output

Enter text :

santo reads in class five.

He always speak the truth.

He respects his teachers.

He feels shy when I admire him.

I like his morality.
Number of lines Number of words Number of characters

5 25 128

Note: If you press the Enter button two times, the program will terminate.

Chapter 11

Review Questions

11.1: What are input and output streams?

Ans:The stream that supplies data to the program is known as input stream and one that receives
data from the program is known as output stream.

11.2: What are the steps involved in using a file in a C++ program?

Ans:The I/O system of C++ handles file operations which are very much similar to the console

Scanned with CamScanner

input and output operations. The input stream extracts data from the file and output stream inserts
data to the file.

Input stream
read data
E—
ata input
4 a P
Disk files Program
Qutput stream data output
P <

write output

Fig : File mput and output streams

11.3: Describe the various classes available for file operations.

Ans:See fig 11.3 of Balagurusamy, Page-325

11.4: What is the difference between opening a file with a constructor function and opening
a file with open() function? When is one method preferred over the other?

Ans:When we open a file with a constructor a file name must be supplied during creation of
object.

Example : ofstream outfile (“result™); //output only.
But when we use open () function we can provide file name later.

Example :
ofstream outfile;
outfile. open (“Result™);

Another difference is we can provide file modes using open () function.

stream-object open (“file name”, mode);

constructor method is proffered for only one file in the stream.

member function open () of the class is preffered when we want to manage multiple files using
one stream.

11.5: Explain how while(fin) statement detects the end of a file that is connected to fin
stream

Ans:The given statement is
while (fin)

Scanned with CamScanner

An ifstream object, such as fin, returns a value of o if any error occurs in the file operation
including the end-of-file condition. We know while loop will terminate when fin returns zero.

Thus end of file is detected.

11.6: What is a file mode? Describe the various file mode options available.

Ans: File-mode specifies the purpose for which the file is opened.

Various file mode options :

Parameter

108:

108:

108::

108::

108:

108::

108::

108:

app

:ate

binary

in

‘nocreate

noreplace

out

:trunc

Meaning
Append to end of file
Go to end of file on opening
Binary file
open file for reading only
open fails if the file does not exist
open fails if file already exist
open file for writing only.

Delete the contents of the file if it exist.

11.7: Write a statement that will create an object called fob for writing, and associate it with

a file name DATA
Ans: ofsteam fob;
fob.open (“DATA”);

11.8: How many file objects would you need to create to manage the following situations?

(a) To process four files sequentially.

(b) To merge two sorted files into a third file. Explain.

Ans: (a) only a single stream object.

(b) In such case we need to create two separate input stream for handling the two input files and
one output stream for handling the output file. That means require three stream object.

Scanned with CamScanner

11.9: Both ios::ate and ios::app place the file pointer at the end of the file (when it is opened).
‘What then, is the difference between them?

Ans: Both ios::ate and ios::app take us to the end of the file when it is opened. The difference
between the two parameters is that the ios::app allows us to add data to the end of the file only.
While ios::ate mode permits us to add data or to modify the existing data anywhere in the file.

11.10: What does the “current position” mean when applied to files?

Ans: The “curren position” applied to file means the byte location at which the next read or write
operation will take place.

11.11: Write statements using seekg() to achieve the following:

(a) To move the pointer by 15 positions backward from current position.
(b) To go to the beginning after an operation is over.

(c) To go backward by 20 bytes from the end.

(d) To go to byte number 50 in the file.

Ans: Let, fout be an ofstream object.
(a) fout.seekg (-15,10s::cur);

(b) fout.seekg(0,ios::beg);

(c) fout.seekg (-20,10s::end);

(d) fout.seekg (49,10s::beg);

11.12: What are the advantages of saving data in binary form?

Ans: The binary format is more accurate for storing the numbers as they are stored in the exact
internal representation. There are no comuensions while saving the data and therefore saving is
much faster read () and write () function do this job.

11.13: Describe how would you determine number of objects in a file. When do you need
such information?

Ans: We can find out the total number of objects in a file using object_length as follows:
in n = file_size/object_length;

This information is required to

1. Display the contents of a file.

2. Modify an existing item

3. Adding new item

4. Deleting an existing item

Scanned with CamScanner

11.14: Describe the various approaches by which we can detect the end+of-file condition
successfully.

Ans: Let, fin be an object of if stream. If end of file occurs fin returns zero. So we can use while
(fin) to detect end of file.

11.15: State whether the following statements are TRUE or FALSE.

(a) A stream may be connected to more than one file at a time.

(b) A file pointer always contains the address of the file.

(c) The statement

outfile.wrttel(char *) & obj.sizeof(obj));

writes only data in obi to outfit..

(d) The ios::ate mode allows us to write data anywhere in the file.

(e) We can add data to an existing file by opening in write mode.

(f) The parameter ios::app can be used only with the files capable of output.

(g) The data written to a file with write) function can be read with the get() function.
(h) We can use the functions tellp() and tellg() interchangeably for any file.

(i) Binary files store floating point values more accurately and compactly than the text files.
(j) The fin.fail()call returns non-zero when an operation on the file has failed.

Ans:

(a) FALSE

(b) FALSE

* file pointer can be a synonym for current position.
(c) TRUE

(d) TRUE

(e) TRUE

(f) TRUE

(g) FALSE

(h) FALSE

* tell () is for output file and tell g () for input file
(i) TRUE

(j) FALSE

* fin fail () cau returns non-zero when an input or output operation on the file has failed.

Debugging Exercises

NOTE: We are sorry to say that Debugging Exercise questionno 11.1 ,11.2 and 11.3 is
unfortunately missed. We will come back with this question and answers very soon. Stay tune
with us. Happy coding

11.4: Find errors in the following statements,

Scanned with CamScanner

(a) ifstream.infile("DATA™);

(b) finl.getline(); //finl is input stream

(c) if(finl.eof() == 0) exit(1):

(d) close(f1);

(e) infile.open(argc);

(g) sfinout.open(file,ios::in |ios::out] i0s::ate);

Solution:
(a) Error : Improper use of ifstream.

Correction : ifstream infile ("DATA”);

(b) Here you must give two argument for getline () function one is string type variable name and
another is string size. Such as

char s[20];

getline(s, 20);

(c) If we write

if (finl, eof ()==0)

exit (1);

it input only one character from file and then it will exit.

(d) close () is void type argument function so it will be fl.close ()

(e) argc is called argument counter and agrv is called argument vector so to open data file we can
write the statement like this:

infile.open (argv[1]) :

(f) The argument file must write as ™~ file” because this is string type.
Correction :

fstream sfinout;
ios::out, ios::ate); | sfinout.open (“*file”, ios::in

Programming Exercises

11.1 Write a program that reads a text file and creates another file that is identical except
that every sequence of consecutive blank spaces is replaced by a single space.

Solution:

#include<iostream.h>

#include<fstream.h>

#include<stdio.h>

#include<string.h>

int main()

Scanned with CamScanner

ofstream of; // of is a object of ofstream file.
of.open("hasib.txt"); // open a text document file named “hasib™ to write.

char c;
ifstream inf{"santo.txt"); // open a text document file named “santo™ to read.
inf.get(c); // retrieve a single character from “santo™ file.

while(inf) //1s character is /0" ? if not go inside loop
{

if(c="") // is character is a space? If yes execute “if” statement.
{

while(inf) //is character is /0" ? if not go inside loop

{
inf.get(c); // retrieve a single character from “santo” file.
if(c!="") // is character is not a space?
{ // If yes go outside the while loop.

break; // this is just for skip the space.

}

}

of<<""; // write single space to “hasib” text document file.
of<<c; // write next charcter to “hasib” text document file.

}

else
of<<c; // write single character where no space exits.
inf.get(c); //retrieve a single character from “santo” text document again.

]

return 0;
)

Note: Before you run this program you just create a “.txt” document to a particular drive where
your compiler was installed.

11.2 A file contains a list of telephone numbers in the following form
John 23456
Ahmed 9876

the names contain only one word and the names and telephone numbers are separated by white
spaces. Write program to read this file and output the list in two columns. The names should be
left justified and the numbers should be right justified.

Scanned with CamScanner

Solution:

#include<iostream.h>
#include<fstream.h>
#include<string.h>
#include<iomanip.h>

int main()

{
char name[100],n[100],number{ 100];

ifstream santo("robin.txt");
cout<<" Enter your desired name to find mobile number :" ;
cin>>n;

again:
santo>>name;
if(!strcmp(name,n))

{
santo.getline(number, 100);
cout<<setw(-20)<<name<<setw(25)<<number<<"\n";

}

else
{
if(santo.eof()!=0)
cout<<" Sorry your input name is not found in list \n";
else
goto again;
)

return 0;

Note: You just create a °.txt” document like as question no 11.1 which contains peoples name and
phone number.

output

Enter your desired name to find mobile number : john
john 23456

11.3 Write a program that will create a data file containing the list of telephone numbers given in
exercise in 11.2. Use a class object to store each set of data.

Scanned with CamScanner

Solution:

#include<iostream.h>
#include<fstream.h>
#define size 5

class phone
{
public:
void set_data();

void phone:: set_data()

{

ofstream santo("phone.txt");

char *name[size]={ "sattar","santo","kamruzzaman","robin","kawser" };

char *number[size]
={"01673050495","01723783117","01818953250","+214324513","+455652132"};

for(int i=0;i<size;i++)

{
santo.setf(ios::left,ios::adjustfield);
santo.width(20):
santo<<namel[i];
santo.setf(ios::right,ios::adjustfield);
santo.width(15);
santo<<number[i]<<"\n";
}
}
int main()
{
phone book;
book.set_data():
return 0;
}

Note: When you run this program, It will create a txt document named ‘phone’.

11.4 Write an interactive, menu-driven program that will access the file created in exercise 11.3
and implement the tasks:
(a) Determine the telephone number of the specified person.

Scanned with CamScanner

(b) Determine the name if a telephone number is known.
(c) Update, the telephone number, whenever there is a change.

Solution:

#include<iostream.h>
#include<fstream.h>
#include<string.h>
#include<iomanip.h>

int main()

{
char name[100],n[100].m[100],number[100];

ifstream santo("robin.txt");

int test;

cout<<" Press 1 to find mobile number of specified person\n "
<<" Press 2 to find name of specified number \n"
<<" Press 3 to update number \n"
<<" What is your option ?: ";

cin>>test;

if(test==1)
{
cout<<" Enter the desired name : ";
cin>>n;
cout<<"\n";
againl:
santo>>name;
if(!strcmp(name,n))
{
santo.getline(number,100);
cout<<setw(-20)<<name<<setw(25)<<number<<"\n";

else
if(santo.eof()!=0)
cout<<" Sorry your input name is not found in list \n";

else
goto againl;

else if(test==2)

{

Scanned with CamScanner

cout<<" Enter the desired number : ";
cin>>n;

cout<<"\n";

again2:

santo>>name;

santo>>number;

if(!stremp(number,n))

{

cout<<setw(-20)<<number<<setw(25)<<name<<"\n";

}

else
{
if(santo.eof()!=0)
cout<<" Sorry your input number is not found in list \n";

else
goto again2;
}
}
else if(test == 3)
{
ofstream hasib("modified.txt");
cout<<"Enter the name whose number have to change : ";
cin>>n;
again3:
santo>>name>>number;

if(!strcmp(n,name))
{
cout<<" Enter changed mobile number of"<<name<<":
cin>>m;
hasib.setf(ios::left,ios::adjustfield);
hasib.width(20);
hasib<<name;
hasib.setf(ios::right.ios::adjustfield);
hasib.width(15);
hasib<<m<<"\n";
while(santo)
{
santo>>name>>number;
hasib.setf(ios::left.ios::adjustfield);
hasib.width(20);
hasib<<name;
hasib.setf(ios::right,ios::adjustfield);
hasib.width(15);
hasib<<number<<"\n";

Scanned with CamScanner

else

if(santo.eof()!=0)

cout<<" Sorry your input name is not available \n";

else

{
hasib.setf(ios::left,i0s::adjustfield);
hasib.width(20):
hasib<<name;
hasib.setf(ios::right.ios::adjustfield);
hasib.width(15):

hasib<<number<<"\n";
goto again3;

J

return 0;

}

During First Run :
output

Press | to find mobile number of specified person
Press 2 to find name of specified number

Press 3 to update number

What is your option 7: 1

Enter the desired name : john

john 23456

During Second Run :
output

Press 1 to find mobile number of specified person
Press 2 to find name of specified number

Press 3 to update number

What is your option 7: 3

Enter the name whose number have to change : Ahmed
Enter changed mobile number of Ahmed : 9876

Scanned with CamScanner

Chapter 12

Review Questions
12.1: What is generic programming? How is it implemented in C++?
Ans: Generic programming is an approach where generic types are used as parameters in
algorithms so that they work for variety of suitable data types and data structures.

It is implemented in C++ using class templetes.

12.2: A template can be considered as a kind of macro. Then, what is the difference between
them?

Ans: Temples are a feature of the C++ programming language at allows functions and classes to
be operated with generic types. This allows a functions or class to work on many different data
types without being written for each one. Temples are of great utility programmers in C4+,
especially when combined with multiple inheritance and operator overloading. The C++ STL
provides many useful functions within a framework of connected templates.

On the other hand the # define directive is typically used to associate meaningful identifiers with
constants, keywords and commonly used statements or expressions. Identifiers that represent
constants are sometimes called “symbolic constant” or “manifest constant™.

Identifiers that represents statements or expressions are called “macros™. In this preprocessor
documentation only the term ‘macro’ is used.

12.3: Distinguish between overloaded functions and junction templates.

Ans: Basic difference is function body will not differ in function overloading.

12.4: Distinguish between the terms class template and template class.

Ans:Class template is a generic class. The class template definition is very similar to an ordinary
class definition except the prefix template and the use of type T.

On the other hand a class created from a class template is called a template class. The process of

creating a specific class from a class template is called instantiation.

12.5: A class (or function) template is known as a parameterized class (or function).

Scanned with CamScanner

Comment.

Ans:When an object of specific type is defined for actual use, the template definition for that
class is substituted with the required data type. Since a template is defined with a parameter that
would be replaced by a specified data type at the time of actual use of the class or function, the

templates are called parameterized classes or functions.

12.6: State which of the following definitions are illegal.

(a) temnplate

class city
i B

(b) template
class city

I I
Lo f

(c) template
class city

i i
(N

(d) template
class city

i 1
Leeree fa

(e) class
class list

I 1§
Lerrer fa

(f) class
class list

I 1§
Lerrer fa

Ans:
(a) Ok

(b) Illegal (type name expected)
template < class P, class R, class s>

class city

Scanned with CamScanner

(f) Ok

12.7: Identify which of the following junction template definitions are illegal.

(a) template

void fun(A, B)

I | &)
Leees fa

(b) template
void fun(A, A)

I 1-
(R

(c) template
void fun(A, A)

I 1-
(R

(d) template
T fun(T. R)

I 1-
(R

(c) template
A fun(int A)

i 1-
(R

Ans:

(a) lllegal
(b) Ok
(c) Ok
(d) Ok

Debugging Exercises

12.1: Identify the error in the following program.

#include<iostream.h>
class Test
{
int intNumber;
float floatNumber;
public:
Test()
{

00 ~1 Oy W e L) DD

Scanned with CamScanner

9 intNumber = 0;

10 floatNumber = 0.0;
11 }

12 int getNumber()

13 {

14 return intNumber;
15 }

16 float getNumber()

17 {

18 return floatNumber;
19 |}

20});

21void main ()

22 |

23 Test objTestl;
24 objTestl.getNumber();
25 |}

Solution:It show ambiguity error, because the compiler consider int getNumber() and float
getNumber() as same function. It happened because you write objtest].getNumber(); in the main()

function

12.2: Identify the error in the following program,

1 #include<iostream.h>

2 template <class R1, class T2>

3 class Person

4 {

5 T1 m_tl;

6 T2 m_t2;

7 public:

8 Person(T1 tl, T2 t2)

9 {

10 m_tl =tl;

11 m_t2 =12;

12 cout << m_tl << " " << m_t2 <<endl;
13 }

14 Person(T2 12, Tl tl)

15 {

16 m_t2 =12;

17 m_tl =tl;

18 cout << m_tl << " " << m_t2 <<endl:
19 }

20});

21void main ()

22 |

23 Person< int, float> objPersonl(1, 2.345);
24 Person<float, char> objPerson2(2.132, r');

Scanned with CamScanner

Solution: Here the two functions [“person (T1 tl, T2, t2)" and ‘person (T2 t2, T1. t1)’] are same.
So you can write one of them.

12.3: Identify the error in the following program,

#include<iostream.h>
template<class T1, class T2>
T1& MinMax(T1 11, T112)

{

return tl >t2 7ta : t2;

"o,

cout << 3

)

void main()

{

10 cout << ++MinMax(2. 3);
11}

Moo N B WO T SR FR I BS R

Solution: There is no error in this program. It will run successfully.

12.4: Find errors, if any, in the following code segment.

ltemplate<class T>
2T max(T. T)
... s

4unsigned int m;
Sint main()

6{

7 max(m, 100);
8}

/

Solution: First you declared T as int type data and then declared as unsigned int type. So it will
show error. If you write this as,

unsigned int n = 100; [N.B must be in main() function]

and max (m, n);

then it will not show any error.

Note: Write ‘return 0; in the main() function.

Programming Exercises

Scanned with CamScanner

12.1: Write a function template for finding the minimum value contained in an array.

Solution:

#include<iostream.h>
const int size=5;
template <class T>
class vector
{
T v[size]:
public:
vector(){ }
vector(T *b);
void show();
minimum(vector<T> &m);
);
template <class T>
vector<T>::vector(T *b)
{
for(int i=0:1<size;i++)
v[i]=b[i]:

}
template<class T>
T vector<T>::minimum(vector<T> &m)
{
int j=0;
for(int k=1:k<size:k++)
{
if(m.v[j]>m.v[k])
=k
}
return m.v[j];
}
template<class T>
void vector<T>::show()
{
cout<<"("<<v[0];
for(int i=1:1<size:1++)
cout<<","<<vl[i];
cout<<")";
cout<<"\n";

J

int main()

{

int x[size]={5,7.3,1,8}://size is 5;

float y[size]={1.2,1.5,2.3,1.0,0.501};

vector<int> v1;
vector<float> v2;

Scanned with CamScanner

vl=x;
v2=y;

cout<<" minimum value = "<<vl.minimum(v1)<<" of array";

v1.show();

cout<<" minimum value = "<<v2.minimum(v2)<<" of array";

v2.show();

return 0;

}
output

minimum value = 1 of array(5,7,3,1,8)

minimum value = 0.501 of array(1.2,1.5,2.3,1,0.501)

12.2: Write a class template to represent a generic vector. Include member functions to

perform the following tasks:

(a) To create the vector

(b) To modify the value of a given element
(c) To multiply by a scalar value

(d) To display the vector in the following form (10, 20, 30 ...)

Solution:

#include<iostream.h>
#include<iomanip.h>
template <class santo>
class vector
{
float *p;
int size;
public:
void creat_vector(santo a);

void set_element(int i.santo value);

void modify(void);
void multiply(santo b);
void display(void);
B
template <class santo>
void vector<santo>::creat_vector(santo a)
{
size=a;
p=new float[size];
}

template <class santo>

void vector<santo>::set_element(int i.santo value)

{

Scanned with CamScanner

plil=value;

]

template <class santo>
void vector<santo> :: multiply(santo b)

{
for(int i=0;i<size:i++)
plil=b*plil;

}

template <class santo>

void vector<santo>:: display(void)

{
cout<<"p["<<size<<"] = (";
for(int i=0;1<s1ze;1++)
{
if(i==size-1)
cout<<pli];
else
cout<<p[il<<", ";
)
cout<<")"<<endl,
)

template <class santo>
void vector<santo>::modify(void)
{
int i;
cout<<" to edit a given element enter position of the element : ";
cin>>1;
i--;
cout<<" Now enter new value of "<<i+1<<"th element:";
santo v;
cin>>v;
plil=v:
cout<<" Now new contents : "<<endl;
display();

cout<<" to delete an element enter position of the element :";
cin>>i;
553

for(int j=i;j<size:j++)
{
plil=pli+11;
}
size--;
cout<<" New contents : "<<endl;
display():

Scanned with CamScanner

int main()
{
vector<float> hasib;
int s;
cout<<" enter size of vector : ";
cin>>s;
hasib.creat_vector(s);

cout<<" enter "<<s<<" elements one by one :"<<endl;

for(int i=0;i<s;i++)
{
float v;
cin>>v;
hasib.set_element(i,v);
}
cout<<" Now contents :"<<endl;
hasib.display();

cout<<" to multiply this vector by a scalar quantity enter this scalar quantity : ";

float m;

cin>>m;

hasib.multiply(m);

cout<<" Now contents : "<<endl;
hasib.display();

hasib.modify();

return 0;

}

output

enter size of vector : 4

enter 4 elements one by one :
4 3 2 5

Now contents :

pl41=(4,3,2.5)

to multiply this vector by a scalar quantity enter this scalar quantity : 3

Now contents :

pl4]=(12,9,6.153)

to edit a given element enter position of the element : 2
Now enter new value of 2th element : 222

Now new contents :

Scanned with CamScanner

pl4]=(12,222,6,15)
to delete an element enter position of the element :3
New contents :

pl31=(12,222,15)

Mujib’S_World

https://mujibsworld.wordpress.com

Scanned with CamScanner

USEFUL LINKS

1. https://www.slideshare.net/mobile/fellowbuddy/computer-networks-lecturenotes

Links of Different Subjects
1. Clanguage:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnRJaU5uVw1ZK4V-
IDWXKm6R

2. C++Llanguage:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnS5 TiSg193ezTPd-Ukb25k

3. Java Programming Language:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnRoTyxlwhhBpgVP1hNdW
SR1

4. Python Programming Language:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnRWX962fQZfOYvhxZbniXB
X

5. Oracle 11g:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnSKUaV7Lddfa5Cp4CyGYsE
A

6. Operating System:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnT1lupHBajPl910bEjC3Xma
0

7. MySql Tutorial:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnT2cEEMQRF4UsqAAQ-
nAWFZ

8. Unix/Linux Tutorial:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnTTbMIHd6on55ENnyhuyG
Av

9. Web Technology:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnRs1KhtgovspEfnUYnUjFkb

10. DBMS Tutorial

Scanned with CamScanner

https://www.youtube.com/playlist?list=PLoVVmGDgrrnR1nwaOM-
X9ykVbLSVpRQ-B

11. HTML Tutorial
https://www.youtube.com/playlist?list=PLoVVmGDgrrnRxTIXhwV1CDWHKUSNr
Wzda

12. Computer Organization:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnQx7HizoZ68mb1myhNY70

EV

13. Data Structure and Algorithm:
https://www.youtube.com/playlist?list=PLoVVmGDgrrnQmbTYV62R6b[Yxziny4Rq
i

14. Computer Science Concept:

https://www.youtube.com/playlist?list=PLoVVmGDgrrnQuMX0paGQ12-
GDkQchalNI

2. https://mcagsets.com/mca-questions-2/computer-fundamentals/computer-

networks-mcg-questions/

3. https://engineeringinterviewquestions.com/computer-networks-multiple-choice-

questions-and-answers/

4, http://examradar.com/short-question-answer-computer-network/

5. http://nrcmcn.blogspot.com/2016/08/long-answer-questions.html?m=1
6. https://www.geeksforgeeks.org/layers-of-osi-

model/amp/#referrer=https://www.google.com

7. https://www.guru99.com/basic-computer-network.html

8. https://www.slideshare.net/mobile/Shawon800/0si-model-72960964

9, https://www.sanfoundry.com/computer-networks-mcqs-basics/

10. https://affairscloud.com/computer-quiz-data-communication-networking-set-

5/?amp#referrer=https://www.google.com

11. https://www.proprofs.com/quiz-school/topic/amp/data-

communication#aoh=15881450114015&csi=1&referrer=https%3A%2F%2Fwww.goo

gle.com& tf=From%20%251%24s

Scanned with CamScanner

